Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > In a project funded by the Austrian Science Fund FWF, the physicist Serdar Sarıçiftçi investigates possible uses in electronics of the semiconductor properties of indigo pigment

Abstract:
Silicon still represents the most important material for the production of semiconductor elements such as transistors, diodes or solar cells. For a number of years, however, an interesting alternative has been available: certain hydrocarbons that also exhibit semiconductor properties are now the new standard in OLED displays of mobile phones and television sets. Moreover, these "organic" semiconductors, as these hydrocarbons are also called, can also be used for solar cells or transistors. Their big disadvantage is their lack of stability: atmospheric oxygen quickly destroys these elements, which is why they need to be packaged in an airtight cover. A research team led by the physicist Serdar Sarıçiftçi from the Johannes Kepler University Linz has now achieved a breakthrough in solving this problem. In a project funded by the Austrian Science Fund FWF, the team managed to produce semiconductors related to the indigo pigment which is not only stable when exposed to air, but also under water.

In a project funded by the Austrian Science Fund FWF, the physicist Serdar Sarıçiftçi investigates possible uses in electronics of the semiconductor properties of indigo pigment

Linz, Austria | Posted on June 14th, 2017

A MIRACLE MATERIAL THAT IS DIFFICULT TO PROCESS

"Actually, we were looking for semiconductor materials that are biodegradable", explains Sarıçiftçi. "In the process we came across this biblical material known as indigo. Indigo and its derivatives exhibit true semiconductor properties. "It did not come as a surprise that indigo showed high stability: "Indigo was used, for instance, in the tombs of Pharaohs, where it is still visible after thousands of years. And the blue in jeans’ material is well known for its sturdiness", notes Sarıçiftçi.
Processability was the problem in using indigo as a semiconductor: it is almost insoluble, which, incidentally, partly explains its durability. Many methods to produce organic semiconductor elements do, however, require the material to be first dissolved in some way and then deposited on a carrier medium. Sarıçiftçi and his group managed to render the pigment soluble by binding volatile side groups to the indigo molecule. When heated above 100°C these side groups split off again.
That has removed the main obstacle to using indigo as a semiconductor, says Sarıçiftçi: "We see this stability of indigo as a game changer. We advise everyone working on organic transistors to concentrate on this class of materials from now on."

UNANSWERED QUESTIONS ABOUT SOLAR CELLS AND LIGHT DIODES

Does this mean the entire field of organic semiconductors can now shift to indigo compounds? Sarıçiftçi sounds a note of caution: "Owing to the hydrogen bonds, indigo has strong luminescence-quenching properties."This weak bond between molecules, which plays an important role in ice, has a disruptive effect on optical applications.
The function of solar cells, for instance, is based on irradiating light interacting with the material, which releases electrons and initiates a current. In indigo molecules, however, such "excited" electronic states are quickly dissipated and converted into heat before they can be used. That means that both solar cells and light-emitting diodes will be difficult to realise with the indigo family of compounds. "We are trying to work around this problem, but there is no real solution to it", explains. Sarıçiftçi. This is an aspect he is currently researching. Transistors are not affected by such problems.

ELECTRONICS FOR IMPLANTS

Sarıçiftçi perceives great potential for indigo materials in medical uses. "We are devoting particular attention to the bio-compatibility of indigo transistors. We were able to show that they can operate even under water at different pH levels. "This means they can be used for implants in human tissue. "It opens the door for bio-applications", observes Sarıçiftçi. Most recently his group published several articles on this issue in renowned journals and was granted a patent. In 2014, he started organising an annual conference on the topic of bioelectronics. (www.bioel.at ).
The low cost of the basic material might also be a decisive advantage. "This will be an argument for future mass applications", notes Sarıçiftçi.

Personal details

Niyazi Serdar Sarıçiftçi (http://www.jku.at/ipc/content/e166682/index_html?emp=e166682/employee_groups_wiss166683/employees166692 ) is a physicist and head of the Linz Institute for Organic Solar Cells (LIOS, http://www.jku.at/ipc/content ) and the Institute of Physical Chemistry at the Johannes Kepler University Linz. His research focus lies on organic semiconductors, and in particular organic solar cells. Sarıçiftçi has received numerous awards, including the 2012 Wittgenstein Award (http://www.fwf.ac.at/en/research-funding/fwf-programmes/wittgenstein-award/ ) from the FWF. He is a corresponding member of the Austrian Academy of Sciences (ÖAW).

####

For more information, please click here

Contacts:

Scientific Contact
Professor Niyazi Serdar Sariciftci
Johannes Kepler University
Linz
Altenbergerstraße 69
4040 Linz, Austria
T +43 / 732 / 2468 5844
E
W http://www.lios.at/

Austrian Science Fund FWF
Ingrid Ladner
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / 1 / 505 67 40 - 8117
E
W http://scilog.fwf.ac.at/en/
W http://www.fwf.ac.at/en

Distribution
PR&D – Public Relations for Research and Education
Mariannengasse 8
1090 Vienna, Austria
T +43 / 1 / 505 70 44
E
W http://www.prd.at/en

Copyright © Johannes Kepler University Linz

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Glowacki E., Tangorra R., Coskun H., Farka D., Operamolla A., Kanbur Y., Milano F., Giotta L., Farinola G., Sariciftci N.S. Bioconjugation of hydrogen-bonded organic semiconductors with functional proteins in: Journal of Materials Chemistry C, 2015

Glowacki E., Apaydin D., Bozkurt Z., Monkowius U., Demirak K., Tordin E., Himmelsbach M., Schwarzinger C., Burian M., Lechner R., Demitri N., Voss G., Sariciftci N.S. Air-stable organic semiconductors based on 6,60-dithienylindigo and polymers thereof in: Journal of Materials Chemistry C, Volume 2, Page(s) 8089, 2014:

Glowacki E., Romanazzi G., Yumusak C., Coskun H., Monkowius U., Voss G., Burian M., Lechner R., Demitri N., Redhamm G., Sünger N., Suranna G., Sariciftci N.S. Epindolidiones - Versatile and Stable Hydrogen-Bonded Pigments for Organic Field-Effect Transistors and Light-Emitting Diodes in: Advanced Functional Materials, Volume 25, Page(s) 776, 2015:

Glowacki E., Voss G., Sariciftci N.S. 25th Anniversary Article: Progress in Chemistry and Applications of Functional Indigos for Organic Electronics in: Advanced Materials, Volume 25, Page(s) 6783, 2013:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project