Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials

This is a schematic illustration of the dynamic size effect in enhancing the oxidation resistance of active FeO NSs.
CREDIT
Image by YANG Fan
This is a schematic illustration of the dynamic size effect in enhancing the oxidation resistance of active FeO NSs. CREDIT Image by YANG Fan

Abstract:
The research group led by Prof. BAO Xinhe from Dalian Institute of Chemical Physics, Chinese Academy of Sciences discovered that oxide nanostructures (NSs) with a diameter below 3 nm could exhibit an oxidation resistance much more superior than larger NSs. By investigating the oxidation mechanism at the atomic level, the team proposed, for the first time, a "dynamic size effect", that determines the stability of supported nanoparticles.

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials

Beijing, China | Posted on February 24th, 2017

These findings were published in the latest issue of Nature Communications, entitled "Enhanced oxidation resistance of active nanostructures via dynamic size effect". This study not only brings the atomic understanding of the dynamic remodeling mechanism of nanocatalyst under the atmosphere, but also provides a new interface control for the development of anti-corrosion and anti-oxidation nano-protective coating.

A major challenge limiting the practical applications of nanomaterials is that the activities of NSs increase with reduced size, often sacrificing their stability in the chemical environment. Under oxidative conditions, NSs with smaller sizes and higher defect densities are commonly expected to oxidize more easily, since high-concentration defects can facilitate oxidation by enhancing the reactivity with O2 and providing a fast channel for oxygen incorporation.

Yet, several nanocrystalline materials were also reported previously to exhibit improved oxidation resistance with respect to bulk materials and have been applied as anti-corrosion coatings. The lack of general consensus on the oxidation resistance of oxide NSs has been attributed to the limited understanding on the underlying mechanism of oxidation. Particularly, the oxidation kinetics of NSs with diameters below 5 nm have rarely been studied.

BAO's team and Prof. YANG Fan thus constructed FeO NSs with different sizes on Pt (111) and studied their oxidation kinetics using high resolution scanning tunneling microscopy (STM) and density-functional theory (DFT) calculations. Reducing the size of active FeO NSs was found to increase drastically their oxidation resistance and a maximum oxidation resistance is found for FeO NSs with dimensions below 3.2 nm. The team found the enhanced oxidation resistance originates from the size-dependent structural dynamics of FeO NSs in O2.

Specifically, the study shows that FeO NSs with a size below 3.2 nm could undergo a facile and complete reconstruction, when O2 dissociates at the coordinatively unsaturated ferrous centers at the edges of FeO NSs. Accompanying the reconstruction, the dissociated oxygen atoms are stabilized at the edges of FeO NSs and could not penetrate into the interface FeO and Pt, thereby inhibiting the further oxidation of FeO NSs. FeO NSs with dimensions above 3.2 nm are easier to be oxidized, because of their inability to complete the reconstruction, accompanied by the formation of surface dislocations.

In other words, small FeO NSs are more susceptible to dynamic changes in the reaction, to achieve a relatively stable structure. The authors term this as the "dynamic size effect" and found it to govern the chemical properties of active NSs. To demonstrate the generality of dynamic size effect, the researchers also studied CoO NSs supported on Pt (111) or Au (111), and found similar oxidation-resistant behavior for NSs below 3 nm.

####

For more information, please click here

Contacts:
LU Xinyi

86-411-843-79201

Copyright © Chinese Academy of Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Marine/Watercraft

New gel could boost coral reef restoration: The substance, applied to surfaces as a coating, improved coral larvae settlement by up to 20 times in experiments compared to untreated surfaces May 16th, 2025

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

A sunlight-driven “self-healing” anti-corrosion coating May 27th, 2022

Quantum tech in space? Scientists design remote monitoring system for inaccessible quantum devices February 11th, 2022

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Automotive/Transportation

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Leading the charge to better batteries February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project