Home > Press > Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
The Hebrew University is a leader in research and development at the nanoscale. CREDIT (Photo by Patricia Alvarado Núñez - graziosopictures.com) |
Abstract:
Chip scale high precision measurements of physical quantities such as temperature, pressure and refractive index have become common with nanophotonics and nanoplasmonics resonance cavities. As excellent transducers to convert small variations in the local refractive index into measurable spectral shifts, resonance cavities are being used extensively in a variety of disciplines ranging from bio-sensing and pressure gauges to atomic and molecular spectroscopy. Chip-scale microring and microdisk resonators (MRRs) are widely used for these purposes owing to their miniaturized size, relative ease of design and fabrication, high quality factor, and versatility in the optimization of their transfer function.
The principle of operation of such resonative sensors is based on monitoring the spectrum dependence of the resonator subject to minute variation in its surrounding (e.g., different types of atoms and molecules, gases, pressure, temperature). Yet despite several important accomplishments, such optical sensors are still limited in their performances, and their miniaturization is highly challenging.
Now, a team from the Hebrew University of Jerusalem has demonstrated an on-chip sensor capable of detecting unprecedentedly small frequency changes. The approach consists of two cascaded microring resonators, with one serving as the sensing device and the other playing the role of a reference -- thus eliminating environmental and system fluctuations such as temperature and laser frequency.
"Here we demonstrate a record-high sensing precision on a device with a small footprint that can be integrated with standard CMOS technology, paving the way for even more exciting measurements such as single particle detection and high precision chip scale thermometry," said Prof. Uriel Levy, Director of the Harvey M. Krueger Family Center for Nanoscience and Nanotechnology at the Hebrew University of Jerusalem, and a faculty member at the Department of Applied Physics in the Rachel and Selim Benin School of Computer Science and Engineering.
Among the innovations that made this development possible are chip scale integration of reference measurement, and a servo-loop locking scheme that translates the measured effects from the optical domain to the radio frequency domain. These enabled the researchers to quantify their system capabilities using well-established RF technologies, such as frequency counters, spectrum analyzers, and atomic standards.
The research appears in the peer-reviewed journal Optica, published by The Optical Society. The MRRs were fabricated at the Hebrew University's Center for Nanoscience and Nanotechnology.
####
For more information, please click here
Contacts:
Dov Smith
972-258-82844
Copyright © The Hebrew University of Jerusalem
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Hardware
The present and future of computing get a boost from new research July 21st, 2023
A Carbon Nanotube Microprocessor Mature Enough to Say Hello: Three new breakthroughs make commercial nanotube processors possible March 2nd, 2020
Lab-on-a-chip
Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime Peer-Reviewed Publication September 24th, 2021
Silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm March 13th, 2020
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||