Home > Press > Researcher's discovery of new crystal structure holds promise for optoelectronic devices
![]() |
Biwu Ma is an associate professor of chemical and biomedical engineering. CREDIT Bill Lax/Florida State University |
Abstract:
A Florida State University research team has discovered a new crystal structure of organic-inorganic hybrid materials that could open the door to new applications for optoelectronic devices like light-emitting diodes and lasers.
The research was published today in the journal Nature Communications.
Associate Professor of Chemical and Biomedical Engineering Biwu Ma has been working with a class of crystalline materials called organometal halide perovskites for the past few years as a way to build highly functioning optoelectronic devices. In this most recent work, his team assembled organic and inorganic components to make a one-dimensional structure.
"The basic building block of this class of materials is the same, like a Lego piece, with which you can assemble different structures," Ma said.
These Lego-like pieces, scientifically called metal halide octahedra, can form 3D networks, 2D layers, or even 1D chains. While 3D and 2D structures have been extensively explored, 1D structures are rare. Ma's team found a way to put these pieces together in a chain, which is surrounded by organic pieces to form a core-shell type wire. Millions of the organic-coated wires then stack together to form a crystalline bundle. From a distance these structures look like crystal needles.
It is the first time scientists have observed these hybrid materials forming a crystal structure like this.
This crystal displays very interesting optical properties, Ma said. For example, it is highly photo luminescent, which scientists can manipulate moving forward as they use it for different technologies.
Hybrid metal halide perovskites have received increased attention in recent years for their potential applications in various types of photon-related technologies such as photovoltaic cells, LEDS and lasers. This new study takes that work one step further by showing that this 1D structure could be another efficient form to produce bright light.
"They are good light emitters," Ma said. "This research tells us we have the capabilities to develop new structures and these materials have great opportunities for practical applications for devices like LEDs or lasers."
Ma came to FSU as part of the Energy and Materials Strategic Initiative with a mission of producing high-tech materials for next generation, energy sustainable technology.
His work is supported through the Energy and Materials Initiative and collaborators at the FSU-based National High Magnetic Field Laboratory where some of the experiments were conducted.
Ma's co-authors on the paper are FSU professors Ronald Clark from the Department of Chemistry and Theo Siegrist from the FAMU-FSU College of Engineering; FSU research faculty Yan Xin and Lambertus van de Burgt; postdoctoral researcher Zhao Yuan; FSU graduate students Chenkun Zhou, Yu Tian, Yu Shu, Joshua Messier, Jamie Wang and Konstantinos Kountouriotis; and University of Florida Professor Kirk Schanze and UF graduate student Ethan Holt.
####
For more information, please click here
Contacts:
Kathleen Haughney
850-644-1489
Copyright © Florida State University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Perovskites
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
Chemical reactions can scramble quantum information as well as black holes April 5th, 2024
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Chip Technology
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Optical computing/Photonic computing
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Programmable electron-induced color router array May 14th, 2025
Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Materials/Metamaterials/Magnetoresistance
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Photonics/Optics/Lasers
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |