Home > Press > Superconductivity: After the scenario, the staging
Abstract:
Superconductivity with a high critical temperature (high Tc) continues to present a theoretical mystery. While this phenomenon is experimentally well established, no scientist has managed to explain its mechanism. In the late 90's, the British physicist Anthony Leggett proposed a scenario based on the Coulomb energy. Today, researchers at the University of Geneva (UNIGE), Switzerland, in collaboration with Leggett and his group, committed to test this scenario. Their findings challenge Leggett's conjecture, opening new avenues for the explanation of high Tc superconductivity. These results are available in the journal Physical Review X.
Superconductivity is at the heart of intensive research in physics, in particular because of its remarkable electronic properties, such as the absence of electrical resistance. Its properties make it an indispensable element for applications in medicine, as well as in transportation and energy storage.
In the late 90's, Prof. Leggett of the University of Illinois presented a scenario for high Tc superconductivity in the cuprates, materials consisting primarily of copper and oxygen. In his scenario, the transition of the material into the superconducting state is a direct consequence of a decrease of that part of the Coulomb energy which is associated with long wavelengths and «midinfrared» frequencies. It remained to be tested experimentally; optical spectroscopy proves to be a suitable technique for probing this part of the Coulomb energy.
The team of Dirk van der Marel, professor at the Department of physics of quantum matter of UNIGE Faculty of Science, has addressed this issue and the many challenges associated to it. 'We have set up an experimental device and a protocol for measuring the long range Coulomb energy. By varying the temperature and the light frequency applied to several superconducting samples, we observed the subtle influence of superconductivity on the Coulomb energy', explains Dirk van der Marel.
The importance of chemical doping
Based on cuprate superconductors, UNIGE physicists have observed that the behavior of the Coulomb energy at the superconducting transition depends on the doping -i.e. the lack (or excess) of electrons: for some values of the doping it decreases, but for others it stagnates or even increases. Changes in temperature of the Coulomb energy appear linked to the doping of the sample: 'there is a critical doping below which the observed behaviour is opposite to Leggett's scenario', says the physicist.
These experimental advances still do not explain high Tc superconductivity in the cuprates, however, they permit to make progress in the understanding and to adapt existing theories having foundations in common with Leggett's scenario. They can be extended to the measurement of the Coulomb energy in other superconducting materials, to other phenomena such as magnetism, to other methods, and provide directions for the development of experiments which will further advance the understanding of superconductivity and other quantum phenomena.
####
For more information, please click here
Contacts:
Dirk Van der Marel
41-223-796-234
Copyright © University of Geneva (UNIGE)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Quantum Physics
Energy transmission in quantum field theory requires information September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Superconductivity
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||