Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Making magnets flip like cats at room temperature: Heusler alloy NiMnSb could prove valuable as a new material for digital information processing and storage

This image shows a flipping NiMnSb magnet.
CREDIT: ill.:/©: Inspire Group, JGU
This image shows a flipping NiMnSb magnet.

CREDIT: ill.:/©: Inspire Group, JGU

Abstract:
In today's world of ever-increasing digital information storage and computation, the next information storage revolution seeks to exploit a novel effect arising from the relativistic physics of Einstein which allows to make a new type of magnet behave like cats. Similar to the ability of a cat to flip itself in the air by twisting different parts of its body in different directions and land on its feet, these magnets can flip themselves through the internal motion of their own electrons. "In these new magnetic materials, a current running through the magnet can turn around the direction of the magnetization depending on the direction of the current," explained Professor Jairo Sinova of the Institute of Physics at Johannes Gutenberg University Mainz (JGU). "This novel phenomenon in physics, dubbed spin-orbit torques, links the spin-degree of freedom of magnets which gives rise to the magnetization to the charge degree of freedom that allows for current-charge motion inside the material.

Making magnets flip like cats at room temperature: Heusler alloy NiMnSb could prove valuable as a new material for digital information processing and storage

Mainz, Germany | Posted on July 25th, 2016

This novel effect has been pioneered, among others, by recent predictions by the Sinova group in Mainz together with theoretical and experimental collaborators. It occurs in magnetic materials that have broken-inversion symmetry. The researchers first observed spin-orbit torques in the artificial bulk diluted magnetic semiconductor GaMnAs. GaMnAs is the diluted counterpart of crystalline zincblende structures of Silicon and Gallium arsenide, which are the pillars of modern electronics. However, in GaMnAs, spin-orbit torques were demonstrated only at very low temperatures.

In collaboration with an international team of researchers from Prague, Cambridge, Würzburg, Jülich, and Nottingham, Professor Jairo Sinova and his Ph.D. students Jacob Gayles and Libor Šmejkal now have published their findings, which could pave the way for using spin-orbit torques in technological applications. Thanks to the synergetic teamwork of theorists and experimentalists, the researchers were able to predict and demonstrate the effect of spin-orbit torques in NiMnSb crystal at room temperature. NiMnSb was chosen according to the systematic analysis of the symmetry the crystal point groups in conjunction with microscopic first principles calculations of the effect. All electrical ferromagnetic resonance measurements were then used to detect the room-temperature spin-orbit torques in NiMnSb microbars. Being able to use single magnet manipulation at room temperature represents an important step towards improved magnetic random access memory architectures for technical applications that are all fully electrical, highly scalable, and require low power.

####

For more information, please click here

Contacts:
Dr. Jairo Sinova

49-613-139-23646

Copyright © Johannes Gutenberg University Mainz

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Magnetism/Magnons

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Possible Futures

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Chip Technology

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Memory Technology

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project