Home > Press > Scientists glimpse inner workings of atomically thin transistors
![]() |
Credit: University of Texas at Austin |
Abstract:
With an eye to the next generation of tech gadgetry, a team of physicists at The University of Texas at Austin has had the first-ever glimpse into what happens inside an atomically thin semiconductor device. In doing so, they discovered that an essential function for computing may be possible within a space so small that it's effectively one-dimensional.
In this visualization of what happens inside a 2-D transistor made of a promising new material called MoS2, electric currents appear initially at the outer edges and then inside of the device. Thread-like flaws can be seen in the interior part of the transistor.
Credit: University of Texas at Austin
In a paper published July 18 in the Proceedings of the National Academy of Sciences, the researchers describe seeing the detailed inner workings of a new type of transistor that is two-dimensional.
Transistors act as the building blocks for computer chips, sending the electrons on and off switches required for computer processing. Future tech innovations will require finding a way to fit more transistors on computer chips, so experts have begun exploring new semiconducting materials including one called molybdenum disulfide (MoS2). Unlike today's silicon-based devices, transistors made from the new material allow for on-off signaling on a single flat plane.
Keji Lai, an assistant professor of physics, and a team found that with this new material, the conductive signaling happens much differently than with silicon, in a way that could promote future energy savings in devices. Think of silicon transistors as light bulbs: The whole device is either turned on or off at once. With 2-D transistors, by contrast, Lai and the team found that electric currents move in a more phased way, beginning first at the edges before appearing in the interior. Lai says this suggests the same current could be sent with less power and in an even tinier space, using a one-dimensional edge instead of the two-dimensional plane.
"In physics, edge states often carry a lot of interesting phenomenon, and here, they are the first to turn on. In the future, if we can engineer this material very carefully, then these edges can carry the full current," Lai says. "We don't really need the entire thing, because the interior is useless. Just having the edges running to get a current working would substantially reduce the power loss."
Researchers have been working to get a view into what happens inside a 2-D transistor for years to better understand both the potential and the limitations of the new materials. Getting 2-D transistors ready for commercial devices, such as paper-thin computers and cellphones, is expected to take several more years. Lai says scientists need more information about what interferes with performance in devices made from the new materials.
"These transistors are perfectly two-dimensional," Lai says. "That means they don't have some of the defects that occur in a silicon device. On the other hand, that doesn't mean the new material is perfect."
Lai and his team used a microscope that he invented and that points microwaves at the 2-D device. Using a tip only 100 nanometers wide, the microwave microscope allowed the scientists to see conductivity changes inside the transistor. Besides seeing the currents' motion, the scientists found thread-like defects in the middle of the transistors. Lai says this suggests the new material will need to be made cleaner to function optimally.
"If we could make the material clean enough, the edges will be carrying even more current, and the interior won't have as many defects," Lai says.
The paper's other authors are postdoctoral researchers Di Wu and Xiao Li; research scientist Lan Luan, and graduate students Xiaoyu Wu and Zhaodong Chu, and professor Qian Niu in UT Austin's Department of Physics; and graduate student Wei Li, former graduate student Maruthi N. Yogeesh, postdoctoral researcher Rudresh Ghosh, and associate professor Deji Akinwande of UT Austin's Department of Electrical and Computer Engineering.
Earlier this year, both Lai and Akinwande won Presidential Early Career Awards for Scientists and Engineers, the U.S. government's highest honor for early-stage scientists and engineers.
###
The research was supported by the U.S. Department of Energy, as well as the Welch Foundation, the Office of Naval Research and the National Science Foundation.
####
For more information, please click here
Contacts:
Christine Sinatra
512-471-4641
Copyright © University of Texas at Austin
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
2 Dimensional Materials
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Videos/Movies
New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022
Govt.-Legislation/Regulation/Funding/Policy
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Possible Futures
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Chip Technology
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |