Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > CWRU physicists deploy magnetic vortex to control electron spin: Potential technology for quantum computing, keener sensors

Researchers coupled a diamond nanoparticle with a magnetic vortex to control electron spin in nitrogen-vacancy defects.
CREDIT: Case Western Reserve University
Researchers coupled a diamond nanoparticle with a magnetic vortex to control electron spin in nitrogen-vacancy defects.

CREDIT: Case Western Reserve University

Abstract:
Researchers at Case Western Reserve University have developed a way to swiftly and precisely control electron spins at room temperature.

CWRU physicists deploy magnetic vortex to control electron spin: Potential technology for quantum computing, keener sensors

Cleveland, OH | Posted on June 21st, 2016

The technology, described in Nature Communications, offers a possible alternative strategy for building quantum computers that are far faster and more powerful than today's supercomputers.

"What makes electronic devices possible is controlling the movement of electrons from place to place using electric fields that are strong, fast and local," said physics Professor Jesse Berezovsky, leader of the research. "That's hard with magnetic fields, but they're what you need to control spin."

Other researchers have searched for materials where electric fields can mimic the effects of a magnetic field, but finding materials where this effect is strong enough and still works at room temperature has proven difficult.

"Our solution," Berezovsky said, "is to use a magnetic vortex."

Berezovsky worked with physics PhD students Michael S. Wolf and Robert Badea.

The researchers fabricated magnetic micro-disks that have no north and south poles like those on a bar magnet, but magnetize into a vortex. A magnetic field emanates from the vortex core. At the center point, the field is particularly strong and rises perpendicular to the disk.

The vortices are coupled with diamond nanoparticles. In the diamond lattice inside each nanoparticle, several individual spins are trapped inside of defects called nitrogen vacancies.

The scientists use a pulse from a laser to initialize the spin. By applying microwaves and a weak magnetic field, Berezovsky's team can move the vortex in nanoseconds, shifting the central point, which can cause an electron to change its spin.

In what's called a quantum coherent state, the spin can act as a quantum bit, or qubit--the basic unit of information in a quantum computer,

In current computers, bits of information exist in one of two states: zero or one. But in a superposition state, the spin can be up and down at the same time, that is, zero and one simultaneously. That capability would allow for more complex and faster computing.

"The spins are close to each other; you want spins to interact with their neighbors in quantum computing," Berezovsky said. "The power comes from entanglement."

The magnetic field gradient produced by a vortex proved sufficient to manipulate spins just nanometers apart.

In addition to computing, electrons controlled in coherent quantum states might be useful for extremely high-resolution sensors, the researchers say. For example, in an MRI, they could be used to sense magnetic fields in far more detail than with today's technology, perhaps distinguishing atoms.

Controlling the electron spins without destroying the coherent quantum states has proven difficult with other techniques, but a series of experiments by the group has shown the quantum states remain solid. In fact, "the vortex appears to enhance the microwave field we apply," Berezovsky said.

The scientists are continuing to shorten the time it takes to change the spin, which is a key to high-speed computing. They are also investigating the interactions between the vortex, microwave magnetic field and electron spin, and how they evolve together.

####

For more information, please click here

Contacts:
Kevin Mayhood

216-534-7183

Copyright © Case Western Reserve University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Quantum Physics

Energy transmission in quantum field theory requires information September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Magnetism/Magnons

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Study on Magnetic Force Microscopy wins 2023 Advances in Magnetism Award: Analysis of finite size effects reveals significant consequences for density measurements November 3rd, 2023

Twisted science: NIST researchers find a new quantum ruler to explore exotic matter October 6th, 2023

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Spintronics

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Spin photonics to move forward with new anapole probe November 4th, 2022

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Quantum Computing

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Quantum nanoscience

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project