Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Spintronics: Resetting the future of heat assisted magnetic recording

The nanostructured membrane has a honeycomb pattern with nanoholes of 68 nm in diameter. The nanoholes pin down the magnetic domains.
CREDIT: HZB
The nanostructured membrane has a honeycomb pattern with nanoholes of 68 nm in diameter. The nanoholes pin down the magnetic domains.

CREDIT: HZB

Abstract:
This paves the way to fast and energy efficient ultrahigh density data storage. The results are published now in the new journal Physical Review Applied.

Spintronics: Resetting the future of heat assisted magnetic recording

Berlin, Germany | Posted on June 15th, 2016

To increase data density further in storage media, materials systems with stable magnetic domains on the nanoscale are needed. For overwriting a specific nanoscopic region with new information, a laser is used to heat locally the bit close to the so called Curie-Temperature, typically several hundred degrees Celsius. Upon cooling, the magnetic domain in this region can be reoriented in a small external magnetic field, known as Heat Assisted Magnetic Recording (HAMR). In industry, Iron-Platinum materials are currently used as magnetic media for the development of such HAMR-data storage devices.

Magnetic signals mapped at BESSY II before and after heating

A HZB team has now examined a new storage media system of Dysprosium and Cobalt, which shows key advantages with respect to conventional HAMR materials: A much lower writing temperature, a higher stability of the magnetic bits, and a versatile control of the spin orientation within individual magnetic bits. They achieved this by sputtering a thin film of Dysprosium and Cobalt onto a nanostructured membrane. The membrane was produced by scientific cooperation partners at the Institute of Materials Science of Madrid. The system shows a honeycomb antidot pattern with distances of 105 nanometers between nanoholes, which are 68 nanometers in diameter. These nanoholes act themselves as pinning centers for stabilizing magnetic wall displacements. The magnetic moments of DyCo5 are perpendicular to the plane and stable against external magnetic fields.

Energy efficient process

HZB-physicist Dr. Jaime Sánchez-Barriga and his team could demonstrate that warming the system to only 80 degrees Celsius is sufficient to tilt the magnetic moments in the DyCo5 film parallel to the surface plane. With measurements at the PEEM and XMCD instruments at BESSY II they could map precisely the magnetic signals before, during and after warming. After cooling to room temperature it is then easy to reorient the magnetic domains with a writing head and to encode new information. "This process in DyCo5 is energy efficient and very fast", states Dr. Florin Radu, co-author of the study. "Our results show that there are alternative candidates for ultrahigh density HAMR storage systems, which need less energy and promise other important advantages as well", adds Sánchez-Barriga.

####

For more information, please click here

Contacts:
Jaime Sánchez-Barriga

49-308-062-15695

Copyright © Helmholtz-Zentrum Berlin für Materialien und Energie (HZB)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Publication: Ferrimagnetic DyCo5 nanostructures for bits in heat-assisted magnetic recording. A. A. Ünal, S. Valencia, F. Radu, D. Marchenko, K. J. Merazzo, M. Vázquez, and J. Sánchez-Barriga:

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Magnetism/Magnons

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Spintronics

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Chip Technology

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Quantum Computing

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Programmable electron-induced color router array May 14th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Quantum nanoscience

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Programmable electron-induced color router array May 14th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project