Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists push valleytronics 1 step closer to reality: Berkeley Lab and UC Berkeley researchers control a promising new way to encode electrons

This schematic shows a TMDC monolayer coupled with a host ferromagnetic semiconductor, which is an experimental approach developed by Berkeley Lab scientists that could lead to valleytronic devices. Valley polarization can be directly determined from the helicity of the emitted electroluminescence, shown by the orange arrow, as a result of electrically injected spin-polarized holes to the TMDC monolayer, shown by the blue arrow. The black arrow represents the direction of the applied magnetic field.
CREDIT: Berkeley Lab
This schematic shows a TMDC monolayer coupled with a host ferromagnetic semiconductor, which is an experimental approach developed by Berkeley Lab scientists that could lead to valleytronic devices. Valley polarization can be directly determined from the helicity of the emitted electroluminescence, shown by the orange arrow, as a result of electrically injected spin-polarized holes to the TMDC monolayer, shown by the blue arrow. The black arrow represents the direction of the applied magnetic field.

CREDIT: Berkeley Lab

Abstract:
Scientists with the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have taken a big step toward the practical application of "valleytronics," which is a new type of electronics that could lead to faster and more efficient computer logic systems and data storage chips in next-generation devices.

Scientists push valleytronics 1 step closer to reality: Berkeley Lab and UC Berkeley researchers control a promising new way to encode electrons

Berkeley, CA | Posted on April 6th, 2016

As reported online April 4 in the journal Nature Nanotechnology, the scientists experimentally demonstrated, for the first time, the ability to electrically generate and control valley electrons in a two-dimensional semiconductor.

Valley electrons are so named because they carry a valley "degree of freedom." This is a new way to harness electrons for information processing that's in addition to utilizing an electron's other degrees of freedom, which are quantum spin in spintronic devices and charge in conventional electronics.

More specifically, electronic valleys refer to the energy peaks and valleys in electronic bands. A two-dimensional semiconductor called transition metal dichalcogenide (TMDC) has two distinguishable valleys of opposite spin and momentum. Because of this, the material is suitable for valleytronic devices, in which information processing and storage could be carried out by selectively populating one valley or another.

However, developing valleytronic devices requires the electrical control over the population of valley electrons, a step that has proven very challenging to achieve so far.

Now, Berkeley Lab scientists have experimentally demonstrated the ability to electrically generate and control valley electrons in TMDCs. This is an especially important advance because TMDCs are considered to be more "device ready" than other semiconductors that exhibit valleytronic properties.

"This is the first demonstration of electrical excitation and control of valley electrons, which will accelerate the next generation of electronics and information technology," says Xiang Zhang, who led this study and who is the director of Berkeley Lab's Materials Sciences Division.

Zhang also holds the Ernest S. Kuh Endowed Chair at the University of California (UC) Berkeley and is a member of the Kavli Energy NanoSciences Institute at Berkeley. Several other scientists contributed to this work, including Yu Ye, Jun Xiao, Hailong Wang, Ziliang Ye, Hanyu Zhu, Mervin Zhao, Yuan Wang, Jianhua Zhao and Xiaobo Yin.

Their research could lead to a new type of electronics that utilizes all three degrees of freedom--charge, spin, and valley, which together could encode an electron with eight values of information instead of two in today's electronics. This means future computer chips could process more information with less power, enabling faster and more energy efficient computing technologies.

"Valleytronic devices have the potential to transform high-speed data communications and low-power devices," says Ye, a postdoctoral researcher in Zhang's group and the lead author of the paper.

The scientists demonstrated their approach by coupling a host ferromagnetic semiconductor with a monolayer of TMDC. Electrical spin injection from the ferromagnetic semiconductor localized the charge carriers to one momentum valley in the TMDC monolayer.

Importantly, the scientists were able to electrically excite and confine the charge carriers in only one of two sets of valleys. This was achieved by manipulating the injected carrier's spin polarizations, in which the spin and valley are locked together in the TMDC monolayer.

The two sets of valleys emit different circularly polarized light. The scientists observed this circularly polarized light, which confirmed they had successfully electrically induced and controlled valley electrons in TMDC.

"Our research solved two main challenges in valleytronic devices. The first is electrically restricting electrons to one momentum valley. The second is detecting the resulting valley-polarized current by circular polarized electroluminescence," says Ye. "Our direct electrical generation and control of valley charge carriers, in TMDC, opens up new dimensions in utilizing both the spin and valley degrees of freedom for next-generation electronics and computing."

###

The research was supported by the Office of Naval Research Multidisciplinary University Research Initiative program, the National Science Foundation, China's Ministry of Science and Technology, and the National Science Foundation of China.

The paper, "Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide" is scheduled for Advance Online Publication on Nature Nanotechnology's website at 11 am ET on April 4

####

About Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

For more information, please click here

Contacts:
Dan Krotz

510-486-4019

Copyright © Lawrence Berkeley National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Go here to learn more about Xiang Zhang's research:

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Spintronics

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Research partnerships

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project