Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A new-structure magnetic memory device developed

Schematics of structures for three kinds of spin-orbit-torque-induced magnetization scheme. (a) The first previous structure where the magnetization is perpendicular to the film plane. (b) The second previous structure where the magnetization is in-plane and orthogonal to channel current. (c) The new structure where the magnetization is in-plane and collinear with the current.
CREDIT: Shunsuke Fukami
Schematics of structures for three kinds of spin-orbit-torque-induced magnetization scheme. (a) The first previous structure where the magnetization is perpendicular to the film plane. (b) The second previous structure where the magnetization is in-plane and orthogonal to channel current. (c) The new structure where the magnetization is in-plane and collinear with the current.

CREDIT: Shunsuke Fukami

Abstract:
The research group of Professor Hideo Ohno and Associate Professor Shunsuke Fukami of Tohoku University has developed a new-structure magnetic memory device utilizing spin-orbit- torque-induced magnetization switching.

A new-structure magnetic memory device developed

Sendai, Japan | Posted on March 24th, 2016

For these two decades, much effort has been devoted to the development of magnetic random access memories (MRAMs), which store information as the magnetization direction of a magnet. Since the magnetization can, be in general, be reversed at high speed unlimitedly, the MRAMs are regarded as a promising replacement for currently-used semiconductor-based working memories such as static random access memories (SRAMs) and dynamic random access memories (DRAMs), which are now facing several serious issues.

The central issue of the MRAM development is how to achieve magnetization reversal efficiently.

Recently, spin-orbit-torque (SOT)-induced magnetization switching - where torques brought about by an in-plane current through the spin-orbit interactions are utilized - was demonstrated and intensively studied. In principle, the SOT-induced switching allows for an ultrafast magnetization reversal in a nanosecond timescale.

The research group of Tohoku University showed a new scheme of SOT-induced magnetization switching. Whereas there had been two kinds of switching schemes where the magnetization is directed orthogonally to the applied write current, the present structure has the magnetization directing collinear with the current. The group fabricated three-terminal devices with the new structure, where a Ta/CoFeB/MgO-based magnetic tunnel junction is used, and successfully demonstrated the switching operation.

The required current density to induce the magnetization switching was reasonably small and the resistance difference between "0" and "1" states was reasonably large, indicating that the new structure is a promising candidate for the MRAM applications.

In addition, the group showed that the new structure has the potential to serve as a useful tool to go deeply into the physics of SOT-induced switching, in which a number of unrevealed issues remain.

The magnetic memory device can store the information without power supply, allowing a drastic reduction of the power consumption of integrated circuits. In particular, this benefit becomes significant for applications that have relatively long standby times, such as sensor nodes which are likely to perform important roles in future IoT (Internet of Things) societies.

In this regard, the present work is expected to pave the way toward the realization of ultralow-power and high-performance integrated circuits and IoT societies.

####

For more information, please click here

Contacts:
Shunsuke Fukami

Copyright © Tohoku University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Magnetism/Magnons

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Internet-of-Things

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New nanowire sensors are the next step in the Internet of Things January 6th, 2023

New chip ramps up AI computing efficiency August 19th, 2022

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

Possible Futures

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Chip Technology

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Memory Technology

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Sensors

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project