Home > Press > ASRC professor leads study on reconfigurable magnetic nanopatterns
![]() |
| This is Elisa Riedo, PhD, Professor of Physics with the CUNY Advanced Science Research Center's Nanoscience Initiative.
Courtesy of the CUNY Advanced Science Research Center |
Abstract:
A team of international scientists led by researchers of the CUNY Advanced Science Research Center (ASRC) and the Politecnico of Milan in Italy has demonstrated a novel approach for designing fully reconfigurable magnetic nanopatterns whose properties and functionality can be programmed and reprogrammed on-demand.
The method -- published in Nature Nanotechnology and led by Elisa Riedo, Professor of Physics with the ASRC's Nanoscience Initiative, and Riccardo Bertacco, a professor with the Politenico of Milan--is based on thermal scanning probe lithography and uses a hot nano-tip to perform a highly localized field heating and cooling in antiferromagnetic and ferromagnetic thin films. The hot tip is then used to align the spins in the material in any desired direction with nanoscale resolution.
"The proposed technique is straightforward and combines the full reversibility and stability of exchange bias, as the same pattern can be written and reset many times, with the resolution and versatility of scanning probe lithography," said Riedo. "In particular, this work demonstrates how thermal scanning probe lithography is gaining momentum as a key nanofabrication method for the next generation of nanodevices, from biomedical sensing to sprintronics."
This approach offers researchers the opportunity to control magnetism at the nanoscale as never before. The authors used this method to fabricate channels where spin waves can propagate. Spin waves are a propagating re-ordering of the magnetization in a material. A new generation of computing and sensing devices can be fabricated based on the propagation of spin waves instead of the more conventional electric current.
Bertacco noted these findings will allow for the development of novel metamaterials with finely-tuned magnetic properties, as well as a reconfigurable computing device architectures.
"Equally promising is the creation of structures with high response to external magnetic fields, as they can be used as sensors in new architectures of spintronic devices," he said. "The potential target market for these devices is extremely large--especially with the advent of the age of the 'Internet of things'--in which every object has a growing need for integrated sensors and computational capacity."
Edoardo Albisetti, postdoctoral research associate at the Politecnico of Milan and the paper's first author, said the new magnetic nanostructure patterning method gives researchers an increased amount of control.
"So far, the patterning of magnetic nanostructures has been mainly achieved through irreversible structural or chemical modifications," Albisetti said. "On the contrary, by using this new thermal assisted magnetic scanning probe lithography (tam-SPL) method, the magnetic nanopatterns are fully reconfigurable and obtained without modifying the film chemistry and topography."
The ability to draw new meta-magnetic materials opens the way for the development of innovative devices for information processing based on logic cells as well as on the propagation and manipulation of spin waves in magnonic structures.
###
The work was supported by the U.S. Department of Energy, the US National Science Foundation, and the Fondazione Cariplo.
####
For more information, please click here
Contacts:
Paul McQuiston
212-413-3307
Copyright © CUNY Advanced Science Research Center
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links |
| Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
Magnetism/Magnons
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Chemistry
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Thin films
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023
New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022
Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Spintronics
Quantum materials: Electron spin measured for the first time June 9th, 2023
Chip Technology
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Tools
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes
Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
Simple ballpoint pen can write custom LEDs August 11th, 2023
Disposable electronics on a simple sheet of paper October 7th, 2022
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||