Home > Press > CCNY researchers introduce new route to thermal measurements with nanometer resolution
![]() |
Abstract:
Understanding nanoscale heat flow is critical in the design of integrated electronic devices and in the development of materials for thermal insulation and thermoelectric energy recovery. While several techniques are currently available to observe heat transport over macroscopic distances, there is a need for new methods capable of revealing the dynamics of heat flow with nanometer resolution.
A team led by Physics Professors Carlos Meriles of CCNY and Elisa Riedo of the CUNY Advanced Science Research Center's Nanoscience Initiative report on a versatile platform for nanoscale thermal measurements based on a combination of magnetic resonance, and optical and atomic force microscopy, in Nature Communications. Their paper, "Imaging thermal conductivity with nanoscale resolution using a scanning spin probe," is based on a simple notion: that a hot probe in contact with a thermally conductive material, such as a metal, cools down because heat flows from the probe into the material. The latter is prevented, however, if the sample material is thermally insulating, implying that one can infer the sample thermal conductivity by continuously monitoring the probe temperature.
To implement this idea at the nanoscale, the researchers used a thermal atomic force microscope, where the cantilever temperature can be adjusted via the application of an external current. The AFM cantilever hosts a sharp tip that makes contact with the substrate on a small, nanometer-size area. To measure the tip temperature, the CCNY team attached to the tip apex a diamond nanocrystal, whose thermally-dependent fluorescence effectively made it a tiny thermometer. Nanometer-resolved thermal conductivity maps were then obtained as the tip was scanned over various substrates of heterogeneous composition.
The team anticipates multiple applications ranging from fundamental problems of heat flow in nanostructures and radiative heat transport in nano-gaps, to the characterization of materials undergoing heterogeneous phase transitions, to the investigation of catalytic exothermal reactions. Although in the present implementation heat flows from the AFM tip into the sample, the technique can be immediately adapted to probe the local temperature in a hot, non-uniform substrate without the need of a thermal cantilever.
"This form of nanoscale scanning thermometry can play an important role in the characterization of the 'hot spots' formed at the junctions of semiconductor heterostructures, known to be critical in the generation of heat within integrated electronic devices," said Meriles.
####
About City College of New York
Since 1847, The City College of New York has provided low-cost, high-quality education for New Yorkers in a wide variety of disciplines. More than 16,000 students pursue undergraduate and graduate degrees in: the College of Liberal Arts and Sciences; the Bernard and Anne Spitzer School of Architecture; the School of Education; the Grove School of Engineering; the Sophie Davis School of Biomedical Education, and the Colin Powell School for Civic and Global Leadership. U.S. News, Princeton Review and Forbes all rank City College among the best colleges and universities in the United States.
For more information, please click here
Contacts:
Jay Mwamba
212-650-7580
Copyright © City College of New York
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Physics
Imaging
Turning up the signal November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Hardware
The present and future of computing get a boost from new research July 21st, 2023
A Carbon Nanotube Microprocessor Mature Enough to Say Hello: Three new breakthroughs make commercial nanotube processors possible March 2nd, 2020
Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor February 11th, 2020
Chip Technology
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Tools
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
Turning up the signal November 8th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |