Home > Press > Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors
In 1-D, electrons cannot "pass each other". CREDIT: Osaka University |
Abstract:
In the one-dimensional (1D), various exotic phenomena are predicted that are totally different from those in the 3D world in which we live. One of the reasons of this is that particles cannot pass each other in 1D. (Fig. 1, in other words, correlation between electrons plays much more important role than those in 3D)
Researchers in Japan and France artificially created such unique 1D nano electronic systems on the surface of a solid, and observed the 1D electronic state (energy and kinetic momentum of electrons) by analyzing photo-emitted electrons from the sample, and verified the electronic structure. This group's research will help elucidate the mystery of unique electronic properties of 1D nano metals and provide, for example, information helpful for the prediction of electrons confined in extremely fine metal nanowires used in next-generation semiconductor devices.
A group of researchers led by Yoshiyuki Ohtsubo (Assistant Professor) and Shin-ichi Kimura (Professor) at Osaka University, Kiyohisa Tanaka (Associate Professor) of the Institute for Molecular Science, and Amina Taleb (Research Director/UR1-CNRS) of Synchrotron SOLEIL, France, artificially created Tomonaga-Luttinger liquid (TLL) on the surface of a semiconductor crystal. TLL is a typical exotic state in 1D in which electrons move not as individual paticles, but as a group, and the movements of spin and charge appear separately. This state is totally different from the normal state of electrons in metal.
Using angule-resolved photoemission spectroscopy, a method for observing kinetic momentum and binding energy of electrons in solid by shedding light on solid and observing the angle and energy of emitted electrons, this group elucidated the electrons' state and movement in a wide scope of energy for the first time.
The 1D surface nanostructure discovered by this group, through the determination of detailed atomic structure and comparison with theoretical computation, will develop research on 1D nano-metallic electronic state, which had not been well known to this point due to shortage of experimental data.
As the understanding of the uniqueness of 1D nano metals is essential for predicting electronic properties of extremely fine metal nanowires in next-generation semiconductor devices, further development of research is highly anticipated.
This research was published in Physical Review Letters on Dec. 17th, 2015 (EST).
####
For more information, please click here
Contacts:
Saori Obayashi
81-661-055-886
Copyright © Osaka University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Finding quantum order in chaos May 17th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||