Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > First all-antiferromagnetic memory device could get digital data storage in a spin

Abstract:
If you haven't already heard of antiferromagnetic spintronics it won't be long before you do. This relatively unused class of magnetic materials could be about to transform our digital lives. They have the potential to make our devices smaller, faster, more robust and increase their energy efficiency.

First all-antiferromagnetic memory device could get digital data storage in a spin

Nottingham, UK | Posted on January 16th, 2016

Physicists at The University of Nottingham, working in collaboration with researchers in the Czech Republic, Germany and Poland, and Hitachi Europe, have published (2pm US ET Thursday 14 January 2016) new research in the prestigious academic journal Science which shows how the 'magnetic spins' of these antiferromagnets can be controlled to make a completely different form of digital memory.

Lead researcher Dr Peter Wadley, from the School of Physics and Astronomy at The University of Nottingham, said: "This work demonstrates the first electrical current control of antiferromagnets. It utilises an entirely new physical phenomenon, and in doing so demonstrates the first all-antiferromagnetic memory device. This could be hugely significant as antiferromagnets have an intriguing set of properties, including a theoretical switching speed limit approximately 1000 times faster than the best current memory technologies."

This entirely new form of memory has a set of properties which could make it extremely useful in modern electronics. It does not produce magnetic fields, meaning the individual elements can be packed more closely, leading to higher storage density. Antiferromagnet memory is also insensitive to magnetic fields and radiation making it particularly suitable for niche markets, such as satellite and aircraft electronics.

If all of this potential could be realised, antiferromagnetic memory would be an excellent candidate for a so-called "universal memory", replacing all other forms of memory in computing, and transforming our electronic devices.

How did they do it?

Using a very specific crystal structure, CuMnAs, grown in almost complete vacuum, atomic layer by atomic layer -- the research team has demonstrated that the alignment of the 'magnetic moments' of certain types of antiferromagnets can be controlled with electrical pulses through the material.

Dr Frank Freimuth of the Peter Grünberg Institute and the Institute for Advanced Simulation in Jülich said: "The electric current brings about a quantum mechanical torque on individual spins and allows each of them to tilt 90 degrees". An effect first predicted by Dr Jakub Zelezny in Prague, Professor Tomas Jungwirth and colleagues at Nottingham.

What makes antiferromagnets better than ferromagnets?

Ferromagnets react to external magnetic fields. For magnetic strips on credit cards or hard drives on computers, this effect is useful as it allows data to be written. But it is necessary to shield these materials from unwanted magnetic fields, generated for instance by certain kinds of medical equipment, so that data is not deleted by mistake.

Antiferromagnetic materials are not influenced by magnetic fields, and are of no use in magnetic data writing methods commonly utilised today. Until now, it has only been possible for them to be used in the field of information technology in combination with other classes of materials.

But antiferromagnets are magnetically more robust and can, in principle, be switched much faster than ferromagnets, so the research team decided to look for a way to develop them into an independent data storage material class.

As a result, they have succeeded in electrically controlling the switching and read-out of the magnetic moment of an antiferromagnetic material.

The potential

Dr Wadley said: "In contrast to current (ferromagnetic) memory technologies, our antiferromagnetic memory cannot be erased even by large magnetic fields. It also does not generate magnetic fields, meaning that the individual memory elements could be packed more closely together, leading to denser memory storage. Another foreseen advantage, which is yet to be established, is the speed by which information can be written in antiferromagnetic memories. Its physical limit is hundreds to thousands of times greater than in ferromagnets.

"The potential increase in speed of operation, robustness, energy efficiency and storage density could have a huge commercial and societal impact."

This research, funded by the Grant Agency of the Czech Republic, the Engineering and Physical Sciences Research Council (EPSRC) in the UK and an EU 7th Framework Programme Grant. Dr Wadley, working with Dr Kevin Edmonds, Dr Richard Campion, Dr Andrew Rushforth, Professor Tomas Jungwirth and Professor Bryan Gallagher in the School of Physics and Astronomy in Nottingham now intends to fully explore this new effect and to produce prototype USB demonstrator memory devices.

MMM Intermag 2016 conference

On the day this research is published (Thursday 14 January 2016) Dr Wadley will be presenting his work at the MMM Intermag conference in San Diego -- the largest conference on magnetism, which is held in the USA.

He said: "In August 2013 Nature Communications we published our first paper on this relatively unexplored area of applied physics. This latest study has taken 2 years to complete. A few years ago the field of antiferromagnetic spintronics was a very niche area. In the last year myself and colleagues have given upward of 20 invited talks at major international conferences. In this coming year there are symposia and sessions dedicated entirely to this exciting new emergent area of electronics research."

####

For more information, please click here

Contacts:
Lindsay Brooke

44-011-595-15751

Copyright © University of Nottingham

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Magnetism/Magnons

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Spintronics

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Memory Technology

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Events/Classes

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project