Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Simultaneous detection of the polarities of hundreds of semiconducting nanowires

Abstract:
Researchers at the University of Valencia have developed a technique to determine the individual polarities of hundreds of semiconducting nanowires in a single, time-saving process. Led by Ana Cros, director of the Universitat de València’s (UV) Materials Science Institute (ICMUV), the study constitutes a major step forward in both our understanding and application of these structures, since their polarity defines the properties of devices made from.

Simultaneous detection of the polarities of hundreds of semiconducting nanowires

Valencia, Spain | Posted on December 29th, 2015

Semiconducting nanowires are structures just tens of nanometres in diameter with a typical length-to-width ratio of around 1000 – like a human hair, only a thousand times smaller. So much so that they are often referred to as one-dimensional materials, and indeed they have many interesting properties not seen in larger 3D materials. Semiconducting nanowires are currently among the most-studied nanometric structures and are the basic building blocks for a range of optoelectronic devices that source, detect and control light, such as light detectors, emittors and nanosensors.

Until now, determining their polarities required the nanowires to be analysed one-by-one as part of a complex and time-consuming process. This new technique uses an atomic-strength microscope and a Kelvin probe to detect minuscule forces and measure the electrical characteristics of the sample’s surface. When combined with advanced data analysis, these measurements reveal the polarities of hundreds of nanowires at the same time.

Ana Cros offers us an analogy: “Our microscope explores the surface of the sample in the same way that a blind person explores their surroundings: it uses a probe as a cane, getting an idea as to surface properties based on changes in vibrations. The difference between the microscope and the cane is that its point is extremely sharp. If we then add the electrical charge, we are able to measure the electrical characteristics of the surface of very small objects without even needing to touch them.”

Known as Kelvin probe force microscopy (KPFM), this technique has made it possible to determine the individual polarities of over 100 nanowires at the same time. Núria Garro, researcher at the ICMUV, explains: “What used to take days -having to select the nanowires one-by-one and ultimately destroying the sample- now takes a matter of hours, without incurring any damage whatsoever to the sample”.

The study was published in the journal Nano Letters and was carried out jointly with the University of Murcia, the University of Grenoble and the French Atomic Energy Commission. It constitutes one of the primary findings from a new line of researched opened at ICMUV for the study of optoelectronic processes in advanced materials and surfaces. It was carried out as part of the European project NANOWIRING (FP7-People) and was led in Valencia by Núria Garro.

Full bibliographic information
A. Minj, A. Cros, N. Garro, J. Colchero, T. Auzelle, B. Daudin
Assessment of Polarity in GaN Self-Assembled Nanowires by Electrical Force Microscopy
Nano Letters 15, 6770 (2015); September 18, 2015; DOI: 10.1021/acs.nanolett.5b02607

####

For more information, please click here

Contacts:
Rachel Spencer

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project