Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers at the University of Gothenburg create focused spin wave beams: Synchronize an unlimited number of spintronic oscillators

Focused spin wave beams.
CREDIT: University of Gothenburg
Focused spin wave beams.

CREDIT: University of Gothenburg

Abstract:
Researchers at the University of Gothenburg Physics Department have finally found the secret to synchronize an unlimited number of spintronic oscillators. Such devices are very promising for future applications requiring wideband functionality.

Researchers at the University of Gothenburg create focused spin wave beams: Synchronize an unlimited number of spintronic oscillators

Gothenburg, Sweden | Posted on December 23rd, 2015

Unfortunately, such nanoscale microwave oscillators suffer from an unbearably low power and high phase noise. It is generally accepted that one of the most attractive ways to solve this issue is to synchronize a large number of these nanoscopic oscillators in order to limit the detrimental influence of thermal energy.

The synchronization of two such oscillators was first published in 2005. However, by 2013 the number of synchronized oscillators had only increased to four low-frequency oscillators and three microwave-frequency oscillators. Furthermore, the coupling was difficult to control in a reproducible manner.

PhD student Afshin Houshang and his supervisor Dr. Randy Dumas in Professor Johan Åkerman's team have now succeeded in demonstrating that it is possible to create and utilize focused beams of spin waves to (i) synchronize oscillators over much larger distances than shown previously and (ii) robustly synchronize a record number of oscillators.

In their article, published in Nature Nanotechnology, they synchronize five oscillators and demonstrate the resulting improvement in the oscillator quality.

- Because we now know how to control the spin wave propagation, there is really no limit to how many oscillators we can now synchronize, said Randy Dumas, who sees great potential in several research areas.

Since the direction of the spin wave beam can also be tailored via electrical current through the oscillator and via an external magnetic field, the results will also have a major impact in the burgeoning field of spin wave based electronics, termed magnonics. By changing the direction of the beam, one can choose which oscillators synchronize and thereby control the flow of information in magnonic circuits in a way that was not possible before.

The results also open up new opportunities for fundamental studies of networks of strongly nonlinear oscillators where an array of perhaps a hundred such oscillators in different geometric architectures can be externally controlled and studied in detail.

- We hope to use these and similar components for extremely fast neuromorphic calculations based on oscillator networks explains Randy.

####

For more information, please click here

Contacts:
Johan Åkerman

46-707-104-360

Copyright © University of Gothenburg

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Spintronics

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Chip Technology

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project