Home > Press > New industrial possibilities for nanoporous thin films
The 3D structure of the metal-organic framework used in this study. The nanopores are represented as yellow balls. |
Abstract:
Metal-organic frameworks (MOFs) are a new type of materials with nanoscale pores. Bioscience engineers from KU Leuven, Belgium, have developed an alternative method that produces these materials in the form of very thin films, so that they can easily be used for high-tech applications such as microchips.
Metal-organic frameworks (MOFs) are a recently developed type of materials that consist of a nanoporous grid of both organic molecules and metal ions. MOFs take shape as the organic molecules push the metal ions apart, so that a regular pattern of tiny holes or nanopores develops.
The size of the pores can be tuned at the nanoscale level (with a nanometre being a billionth of a metre). The internal surface of an MOF, formed by all these pores, varies in size from 1,000 to 5,000 square metres per gram of material. MOFs can be seen as microscopic sponges that can absorb a lot of material.
This property makes MOFs interesting in terms of applications. "Researchers are already looking into these applications", says Professor Rob Ameloot from the KU Leuven Centre for Surface Chemistry and Catalysis. "They are examining the use of MOFs as catalysts to accelerate chemical reactions of guest molecules in the MOF pores. Another possible application is gas storage, as the internal surface of MOFs can hold large amounts.
So far, some applications were not considered feasible due to the production procedure for MOFs. The conventional method involves lab-scale wet chemistry -- the traditional chemistry with solutions and solvents. The end result is a powder. For integrated, nanoscale applications, the particles of that powder are too large, while a method with solutions is not pure enough. In the case of gas sensors, for instance, the MOF material has to be deposited as a thin film over the surface of the electrical circuit. That is not possible if you use the conventional production procedure."
Lead author Ivo Stassen set out to find a production method other than wet chemistry. He used vapours and gases instead of liquids. "Vapour-phase deposition is already a common method to produce high-tech devices. We are the first to use this method for the production of these highly porous materials. We first deposit layers of zinc and let them react with the vapour of the organic material. The organic material permeates the zinc, the volume of the whole expands, and it is fully converted into a material with a regular structure and nanopores", Stassen explains. To fine-tune the procedure, he is collaborating with the Leuven-based research centre imec, which specialises in nanoelectronics. KU Leuven and imec have jointly submitted a patent application.
"This alternative production method opens up new possibilities for MOFs in terms of applications and industries. Chemical vapour deposition is a common technique in nanofabrication. Therefore, new MOF applications can be developed relatively quickly: gas sensors, nanochip components, and improved batteries", Stassen concludes.
###
This research was carried out in collaboration with imec, CSIRO (Australia), and MBI (Singapore).
####
For more information, please click here
Contacts:
Ivo Stassen
32-163-76732
Copyright © KU Leuven
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Patents/IP/Tech Transfer/Licensing
Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023
Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021
Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||