Home > Press > Spintronics, low-energy electricity take a step closer: A new class of topological insulators discovered
![]()  | 
| This is an illustration of topological surface states in bismuth iodide as seen by angle-resolved photoemission spectroscopy. CREDIT: Oleg Yazyev (EPFL)  | 
Abstract:
Topological insulators are materials that let electric current flow across their surface while keeping it from passing it through their bulk. This exotic property makes topological insulators very promising for electricity with less energy loss, spintronics, and perhaps even quantum computing. EPFL scientists have now identified a new class of topological insulators, and have discovered its first representative material, which could propel topological insulators into applications. The work, which was carried out within the framework of the EPFL-led NCCR Marvel project, is published in Nature Materials.
The technological promise of topological insulators has led to an intense search for optimal natural and man-made materials with such properties. Such research combines theoretical work that predicts what properties the structure of a particular material would have. The "candidate" materials that are identified with computer simulations are then passed for experimental examination to see if their topological insulating properties match the theoretical predictions.
This is what the lab of Oleg Yazyev at EPFL's Institute of Theoretical Physics has accomplished, working with experimentalist colleagues from around the world. By theoretically testing potential candidates from the database of previously described materials, the team has identified a material, described as a "crystalline phase" of bismuth iodide, as the first of a new class of topological insulators.
What makes this material particularly exciting is the fact that its atomic structure does not resemble any other topological insulator known to date, which makes its properties very different as well.
One clear advantage of bismuth iodide is that its structure is more ordered than that of previously known topological insulators, and with fewer natural defects. In order to have an insulating interior, a material must have as few defects in its structure as possible.
"What we want is to pass current across the surface but not the interior," explains Oleg Yazyev. "In theory, this sounds like an easy task, but in practice you'll always have defects. So you need to find a new material with as few of them as possible." The study shows that even these early samples of bismuth iodide appear to be very clean with very small concentration of structural imperfections.
After characterizing bismuth iodide with theoretical tools, the scientists tested it experimentally with an array of methods. The main evidence came from a direct experimental technique called "angle-resolved photoemission spectroscopy". This method allows researchers to "see" electronic states on the surface of a solid material, and has become a key technique for proving the topological nature of electronic states at the surface.
The measurements, carried out at the Lawrence Berkeley National Lab, proved to be fully consistent with the theoretical predictions made by Gabriel Autès, a postdoc at Yazyev's lab and lead author of the study. The actual electron structure calculations were performed at the Swiss National Supercomputing Centre, while data analysis included a number of scientists from EPFL and other institutions.
"This study began as theory and went through the entire chain of experimental verification," says Yazyev. "For us is a very important collaborative effort." His lab is now exploring further the properties of bismuth iodide, as well materials with similar structures. Meanwhile, other labs are joining the effort to support the theory behind the new class of topological insulators and propagate the experimental efforts.
###
This study was carried out within the framework of NCCR Marvel, a research effort on Computational Design and Discovery of Novel Materials, created by the Swiss National Science Foundation and led by EPFL. It currently includes 33 labs across 11 Swiss institutions. The work presented here involved a collaboration of EPFL's Institute of Theoretical Physics and Institute of Condensed Matter Physics with TU Dresden; the Lawrence Berkeley National Laboratory; the University of California, Berkeley; Lomonosov Moscow State University; Ulm University; Yonsei University; Pohang University of Science and Technology; and the Institute for Basic Science, Pohang. The study was funded by the Swiss National Science Foundation, the ERC, NCCR-MARVEL, the Deutsche Forschungsgemeinschaft, the U.S. Department of Energy, and the Carl-Zeiss Foundation.
Reference
Autès G, Isaeva A, Moreschini L, Johannsen JC, Pisoni A, Mori R, Zhang W, Filatova TG, Kuznetsov AN, Forró L, Van den Broek W, Kim Y, Kim KS, Lanzara A, Denlinger JD, Rotenberg E, Bostwick A, Grioni M, Yazyev OV. A Novel Quasi-One-Dimensional Topological Insulator in Bismuth Iodide β-Bi4I4. Nature Materials 14 December 2015. DOI: 10.1038/nmat4488
####
For more information, please click here
Contacts:
Nik Papageorgiou
41-216-932-105
Copyright © Ecole Polytechnique Fédérale de Lausanne
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press | 
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Govt.-Legislation/Regulation/Funding/Policy
    New imaging approach transforms study of bacterial biofilms August 8th, 2025
    Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
    Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Spintronics
    Quantum materials: Electron spin measured for the first time June 9th, 2023
Chip Technology
    Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
    A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
    Programmable electron-induced color router array May 14th, 2025
Discoveries
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Materials/Metamaterials/Magnetoresistance
    First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
    Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
    A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
    Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Research partnerships
    Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
    HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||