Home > Press > Nanotube letters spell progress: Rice team characterizes, analyzes stiffness of individual branching nanotubes
Rice University researchers tested the stiffness of individual nanotube junctions with a combined scanning electron microscope and picoindenter. It allowed them to analyze nanotubes in real time. Credit: Evgeni Penev/Rice University |
Abstract:
Never mind the ABCs. Rice University scientists interested in nanotubes are studying their XYΩs.
Carbon nanotubes grown in a furnace aren't always straight. Sometimes they curve and kink, and sometimes they branch off in several directions. The Rice researchers realized they now had the tools available to examine just how tough those branches are.
They used experiments and simulations to study the stiffness of joined nanotubes and found significant differences that are defined by their forms. It turned out that some types are tougher than others, and that all may have their uses if and when nanotubes are used to build macroscale structures.
The team led by Rice materials scientist Pulickel Ajayan and theoretical physicist Boris Yakobson named their nanotubes for their shapes: I for straight nanotubes, Y for branched, X for covalently joined tubes that cross, the lambda symbol (an upside-down "V") for nanotubes that join at any angle and the omega symbol (Ω) for noncovalent tubes that bind through van der Waals and other forces.
They said targeted synthesis of this "nanotube alphabet" may provide material for future nanoscale structures with tunable mechanisms.
The study was published by the American Chemical Society's Nano Letters.
"We needed some sort of language to describe the specific configuration of the junctions, so we thought, 'Let's use letters,'" said Evgeni Penev, a co-author and research scientist in Yakobson's group.
Chandra Sekhar Tiwary, a postdoctoral researcher in the Ajayan lab, prodded the nanotube junctions with a PicoIndenter that measures force and displacement in nanonewtons (billionths of a newton, a unit of force) and nanometers. The PicoIndenter was installed on a scanning electron microscope at Hysitron, a nanomechanical test-instrument manufacturing and testing company in Minneapolis.
Nanotubes grown by Rice graduate student Sehmus Ozden were dispersed in a solution, dried on silicon and placed under the microscope, where Tiwary scanned them for candidate "letters." He then had to be sure those candidates were single units and not just two separate nanotubes. "The space between the tubes could be as little as 1 nanometer but the resolution of the microscope was 5 nanometers, so we had to pick up one side (of the nanotubes) to be sure they were truly welded," he said. "If the nanotubes separated easily, we moved on to the next candidate."
Applying the probe to a particular spot on an individual nanotube was a test of patience, Tiwary said. Once a good candidate appeared, he and Hysitron senior staff scientist and co-author Sanjit Bhowmick zeroed in on the junction and, over 20 minutes, slowly applied and released enough pressure to compress it without breaking it. "In the old days, these tests used brute force, but the new tools are remarkable," Tiwary said. "We were able to watch as we compressed the nanotubes."
Among the atomically bonded tubes, they found the X's were the stiffest and most able to bounce back to nearly their original shapes. Next came Y's and then the any-angle lambdas, but all were left with dents because of newly created links between the inner walls. The I's and omegas, with no covalent bonds joining them to other nanotubes, returned to their original configurations.
The experimentalists turned to graduate student Yang Yang of Yakobson's theoretical group to help understand the mechanism by which the nanotubes handled stress. Yang created atom-level, triple-walled computer models of each "letter" and tested their strength with virtual probes.
"In experiments, we get what is happening quantitatively, but they cannot tell us what is happening inside the tubes," Tiwary said. "Until they did the calculations, we didn't really know how carbon nanotube junctions behaved."
The answer had to do with the atomic geometry at the junctions. Where nanotubes join, carbon atoms that normally come together in six-member rings are often forced to change their configurations, adjusting to five- and seven-member rings (known as dislocations) to remain in the lowest-energy state.
The number of dislocations required to make a nanotube branch is different for each angle. Because the dislocations take the brunt of the force, those variations determine the overall stiffness of the nanotube letter, they determined.
Previous research by Yakobson's group found that while graphene, the atom-thick, chicken-wire-like form of carbon, is extraordinarily strong, it does not stretch very well. But the new simulations also showed the local walls of the nanotubes (which are basically rolled-up graphene) stretch enough to distribute strain applied to the junctions.
Penev suggested that nanotube carpets of certain letters could have material benefits. "Imagine if all the nanotubes were upside-down 'Y' shapes," he said. "Such a carpet would be much harder to crush under pressure."
One question now is whether scientists can grow homogenous batches of letters. "Can we have all Y's and align them perfectly? Or can we have all X interconnects and then make a structure?" Tiwary asked. "That is going to be the next challenge, but it's just a matter of people putting time into it. I'm optimistic."
Syed Asif, director of research and development at Hysitron, is a co-author of the paper. Yakobson is the Karl F. Hasselmann Professor of Materials Science and NanoEngineering and a professor of chemistry. Ajayan is chair of Rice's Department of Materials Science and NanoEngineering, the Benjamin M. and Mary Greenwood Anderson Professor in Engineering and a professor of chemistry.
The research was supported by the U.S. Department of Defense Air Force Office of Scientific Research for the Project MURI: “Synthesis and Characterization of 3-D Carbon Nanotube Solid Networks." Computer resources were provided by XSEDE and Rice's DAVinCI cluster, both supported by the National Science Foundation.
####
About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,888 undergraduates and 2,610 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for best quality of life and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.
Follow Rice News and Media Relations via Twitter @RiceUNews
For more information, please click here
Contacts:
Jeff Falk
713-348-6327
Mike Williams
713-348-6728
Copyright © Rice University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Rice Department of Materials Science and NanoEngineering:
George R. Brown School of Engineering:
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Videos/Movies
New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Military
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||