Home > Press > Spider webs yield clues to stickier glues (video)
Spider glue's humidity-defiant stickiness could help scientists design smarter adhesives. Credit: American Chemical Society |
Abstract:
Spider webs are notoriously sticky. Although they only take a second to swat down, shaking them off your hands can be an exercise in frustration. But that stubborn tackiness could come in handy when designing smart synthetic adhesives that could work even in the most humid conditions. In the journal ACS Nano, scientists report new insight toward that goal.
From parched deserts to the dampest rainforests, spiders have adapted to a wide range of habitats. No matter where they live, the glue on their webs efficiently traps prey. Synthetic glues, on the other hand, tend to lose stickiness as humidity rises. Just try putting on a bandage right after a hot shower -- it won't stay put for long. So in a search for ways to make better adhesives, scientists have turned to glues that spiders use to coat their silk strands. Some of the key ingredients of these glues are salts that hold onto water and change the viscosity -- or how much a substance can spread -- and, as a result, the stickiness. A team of material scientists and biologists at Virginia Tech and the University of Akron in Ohio, including Ali Dhinojwala and doctoral student Gaurav Amarpuri, wanted to see -- literally -- how different spider glues' viscosity and tackiness change at different humidity levels.
The researchers shot high-speed video of five different web glues as they peeled away from a surface under varying moisture levels to understand the role humidity plays in web gooeyness and adherence. In the humidity range matching that of the natural habitat of the species that made each sample, viscosity was at an optimal level, and stickiness peaked. As salts are the key ingredient that controls for moisture, the researchers say adding them to synthetic adhesives could help keep them clingy even in high humidity.
The authors acknowledge funding from the National Science Foundation.
####
About American Chemical Society
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 158,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.
For more information, please click here
Contacts:
Michael Bernstein
202-872-6042
Ali Dhinojwala, Ph.D.
Department of Polymer Science
The University of Akron
Akron, OH 44325
Copyright © American Chemical Society
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
DOWNLOAD FULL-TEXT ARTICLE - "Spiders Tune Glue Viscosity to Maximize Adhesion"
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Videos/Movies
New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||