Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Ultra-short X-ray pulses could shed new light on the fastest events in physics

Abstract:
If you've ever been captivated by slow-motion footage on a wildlife documentary, or you've shuddered when similar technology is used to replay highlights from a boxing match, you'll know how impressive advancements in ultra-fast science can be.

Ultra-short X-ray pulses could shed new light on the fastest events in physics

Oxford, UK | Posted on November 17th, 2015

Researchers from the Department of Physics at Oxford University (with colleagues at the Rutherford Appleton Laboratory and the University of Strathclyde) have demonstrated, for the first time, that it is possible to generate ultra-short x-ray pulses using existing technology - and it could open up a huge range of scientific applications.

A new paper, published in the journal Scientific Reports, outlines how computer simulations of a technique called Raman amplification show that current short-duration x-ray flashes - lasting just a thousandth of a billionth of a second - could be compressed even further, down to a fraction of a femtosecond (one millionth of a billionth of a second).

James Sadler, a second-year DPhil student and lead author of the paper, says: 'X-ray pulses from free electron lasers are being used in a whole host of ways, from biomedical technology and work on superconductors to research into proteins and states of matter in dense planets.

'We have shown, through our simulations, that it is possible to shorten the pulse length of x-rays by a factor of a hundred or a thousand - flashes of light shorter than the time it takes for a chemical reaction to take place. This could have exciting implications across a range of scientific disciplines.'

The simulations, using code written by Warren Mori at UCLA and Professor Luís Silva of the Instituto Superior Técnico in Lisbon, were carried out on the UK's SCARF and ARCHER supercomputers.

Professor Peter Norreys, Principal Investigator of the project, adds: 'A good analogy might be those natural history programmes on TV. When you see, for example, a bird in flight captured by an ultra-fast camera, you can see all the beautiful intricacies that can't be picked up by the naked eye or conventional technology.

'By reducing the pulse length of these x-rays by another order of magnitude - in effect, quickening the "shutter speed" - we can make a number of scientific processes much clearer.'

Those processes include some of the shortest events in physics, such as electrons moving in atoms. The key now, say the researchers, is to demonstrate the technique under laboratory conditions.

###

The research was supported by the Engineering and Physical Sciences Research Council (EPSRC) and the Science and Technologies Facilities Council (STFC).

####

For more information, please click here

Contacts:
Stuart Gillespie

44-018-652-83877

Copyright © University of Oxford

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, titled 'Compression of X-ray Free Electron Laser Pulses to Attosecond Duration', is published in Scientific Reports and will be available to view online at:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Imaging

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project