Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists gain insight into origin of tungsten-ditelluride's magnetoresistance

A team of researchers from Argonne's Materials Science Division and Northern Illinois University, working collaboratively with researchers at Argonne's Center for Nanoscale Materials, report two new findings on WTe2: (1) WTe2 is electronically 3-D with a mass anisotropy as low as 2, and (2) the mass anisotropy varies with temperature and follows the magnetoresistance behavior of the Fermi liquid state. The results not only provide a general scaling approach for the anisotropic magnetoresistance but also are crucial for correctly understanding the electronic properties of WTe2, including the origin of the remarkable "turn-on" behavior in the resistance versus temperature curve, which has been widely observed in many materials and assumed to be a metal-insulator transition.
CREDIT: Argonne National Laboratory
A team of researchers from Argonne's Materials Science Division and Northern Illinois University, working collaboratively with researchers at Argonne's Center for Nanoscale Materials, report two new findings on WTe2: (1) WTe2 is electronically 3-D with a mass anisotropy as low as 2, and (2) the mass anisotropy varies with temperature and follows the magnetoresistance behavior of the Fermi liquid state. The results not only provide a general scaling approach for the anisotropic magnetoresistance but also are crucial for correctly understanding the electronic properties of WTe2, including the origin of the remarkable "turn-on" behavior in the resistance versus temperature curve, which has been widely observed in many materials and assumed to be a metal-insulator transition.

CREDIT: Argonne National Laboratory

Abstract:
Scientists recently discovered that tungsten ditelluride (WTe2) is electronically three-dimensional with a low anisotropy. Anisotropy reflects the change in properties of a material when the direction of the current or the applied magnetic field is varied.

Scientists gain insight into origin of tungsten-ditelluride's magnetoresistance

Argonne, IL | Posted on October 21st, 2015

Similar to graphite consisting of weakly bound graphene layers, WTe2 is a layered material that could be reduced to few layers in thickness or a monolayer and be used in making nanoscale transistors in other electronics. The material was originally thought to be two-dimensional in nature because of the ease with which its layers could be separated.

WTe2 has been the subject of increased scientific interest since a 2014 research study outlined its unusual magnetoresistance, which is the ability of a material to change the value of its electrical resistance when subjected to an external magnetic field.

This particular finding "is interesting in its own right because it shows that the mechanical and electrical properties of a material are not always as closely linked as we may assume," wrote Kamran Behnia, director of quantum matter research at Le Centre National de la Recherche Scientifique in Paris, in an opinion piece on the latest research discovery about WTe2 published in journal Physics, which provides news and commentary on select papers from American Physical Society journals.

Researchers also discovered that the anisotropy of WTe2 varies and displays the magnetoresistance behavior of the Fermi liquid state, which is a theoretical model that describes the normal state of most metals at sufficiently low temperatures.

"In addition to its small values, we found that the anisotropy also varies with temperature and follows the magnetoresistance behavior. This implies a possible temperature induced change in the electronic structure of this material," said Argonne's Zhili Xiao, who led this research. "These findings are important for accurately understanding the electronic properties of WTe2 and other extremely magnetoresistance materials."

###

Photolithographic patterning, deposition and morphological analysis via scanning electron microscopy was accomplished at Argonne's Center for Nanoscale Materials, an Office of Science User Facility. Resistivity measurements and quantum oscillations of resistivity were performed in Argonne's Materials Science Division (MSD).

The research is described in "Temperature-Dependent Three-Dimensional Anisotropy of the Magnetoresistance in WTe2," published in Physical Review Letters.

The paper's co-authors are L.R. Thoutam and Z.L Xiao of Argonne MSD and Northern Illinois University; Y.L. Wang and W.K. Kwok of Argonne MSD; S. Das, A. Luican-Mayer and R. Divan of Argonne's Center for Nanoscale Materials; and G.W. Crabtree of Argonne MSD and the University of Illinois at Chicago.

This work was supported by the DOE Office of Science. Scientists used the Center for Nanoscale Materials to perform nanopatterning and morphological analysis.

####

About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.

For more information, please click here

Contacts:
Jared Sagoff

630-252-5549

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Graphene/ Graphite

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Magnetism/Magnons

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Chip Technology

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project