Home > Press > Surfing water molecules could hold the key to fast and controllable water transport
Snapshot of a water nanodroplet "surfing" on a rippled graphene surface. CREDIT: Ming Ma et al. (2015) |
Abstract:
Scientists at UCL have identified a new and potentially faster way of moving molecules across the surfaces of certain materials.
The team carried out sophisticated computer simulations of tiny droplets of water as they interact with graphene surfaces. These simulations reveal that the molecules can "surf" across the surface whilst being carried by the moving ripples of graphene.
The study, published in Nature Materials, demonstrates that because the molecules were swept along by the movement of strong ripples in the carbon fabric of graphene, they were able to move at an exceedingly fast rate, at least ten times faster than previously observed.
Furthermore, the researchers found that by altering the size of the ripples, and the type of molecules on the surface, they could achieve fast and controlled motion of molecules other than water.. This opens up a range of possibilities for industrial applications such as improved sensors and filters.
Professor Angelos Michaelides, from the Thomas Young Centre and London Centre for Nanotechnology (LCN) at UCL, lead researcher of the study, explained: "Atoms and molecules usually move across materials by hopping from one point on their surface to the next. However, through computer simulations we have uncovered an interesting new diffusion mechanism for motion across graphene that is inherently different from the usual random movements we see on other surfaces."
The motion of atoms and molecules across the surface of materials is of critical importance to a long list of applications, such as the diffusion of molecules across the surface of catalysts, crystal growth or filtration. Of particular technological relevance, and attracting the most attention at present, is the study of water on graphene. Ongoing research suggests that water interacting with graphene has properties as exceptional and potentially transformative as graphene's electronic and mechanical properties.
Although scientists have used a whole array of experimental techniques in the past to investigate the atomic scale details of surface diffusion, they have generally studied the surfaces of traditional three-dimensional materials and have supported the notion that diffusion involves a simple random walk on the surface.
Dr. Ming Ma, the first author of the paper added: "Our work is the culmination of an extensive and meticulously validated set of simulations which has uncovered an unexpected result that may well be at the root of the promised performance of graphene in filters and sensors."
###
This work was carried out in collaboration with Dr Gabriele Tocci (formerly at the London Centre for Nanotechnology) and Prof Gabriel Aeppli, co founder of the London Centre for Nanotechnology and now Professor of Physics at ETH Zürich and EPF Lausanne, and head of the Synchrotron and Nanotechnology Department of the Paul Scherrer Institute, Switzerland.
Journal link: Fast diffusion of water nanodroplets on graphene. Nature Materials. DOI: 10.1038/nmat4449
####
For more information, please click here
Contacts:
Oli Usher
44-020-767-97964
Copyright © University College London
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Water
Taking salt out of the water equation October 7th, 2022
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||