Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Surfing water molecules could hold the key to fast and controllable water transport

Snapshot of a water nanodroplet "surfing" on a rippled graphene surface.
CREDIT: Ming Ma et al. (2015)
Snapshot of a water nanodroplet "surfing" on a rippled graphene surface.

CREDIT: Ming Ma et al. (2015)

Abstract:
Scientists at UCL have identified a new and potentially faster way of moving molecules across the surfaces of certain materials.

Surfing water molecules could hold the key to fast and controllable water transport

London, UK | Posted on October 20th, 2015

The team carried out sophisticated computer simulations of tiny droplets of water as they interact with graphene surfaces. These simulations reveal that the molecules can "surf" across the surface whilst being carried by the moving ripples of graphene.

The study, published in Nature Materials, demonstrates that because the molecules were swept along by the movement of strong ripples in the carbon fabric of graphene, they were able to move at an exceedingly fast rate, at least ten times faster than previously observed.

Furthermore, the researchers found that by altering the size of the ripples, and the type of molecules on the surface, they could achieve fast and controlled motion of molecules other than water.. This opens up a range of possibilities for industrial applications such as improved sensors and filters.

Professor Angelos Michaelides, from the Thomas Young Centre and London Centre for Nanotechnology (LCN) at UCL, lead researcher of the study, explained: "Atoms and molecules usually move across materials by hopping from one point on their surface to the next. However, through computer simulations we have uncovered an interesting new diffusion mechanism for motion across graphene that is inherently different from the usual random movements we see on other surfaces."

The motion of atoms and molecules across the surface of materials is of critical importance to a long list of applications, such as the diffusion of molecules across the surface of catalysts, crystal growth or filtration. Of particular technological relevance, and attracting the most attention at present, is the study of water on graphene. Ongoing research suggests that water interacting with graphene has properties as exceptional and potentially transformative as graphene's electronic and mechanical properties.

Although scientists have used a whole array of experimental techniques in the past to investigate the atomic scale details of surface diffusion, they have generally studied the surfaces of traditional three-dimensional materials and have supported the notion that diffusion involves a simple random walk on the surface.

Dr. Ming Ma, the first author of the paper added: "Our work is the culmination of an extensive and meticulously validated set of simulations which has uncovered an unexpected result that may well be at the root of the promised performance of graphene in filters and sensors."

###

This work was carried out in collaboration with Dr Gabriele Tocci (formerly at the London Centre for Nanotechnology) and Prof Gabriel Aeppli, co founder of the London Centre for Nanotechnology and now Professor of Physics at ETH Zürich and EPF Lausanne, and head of the Synchrotron and Nanotechnology Department of the Paul Scherrer Institute, Switzerland.

Journal link: Fast diffusion of water nanodroplets on graphene. Nature Materials. DOI: 10.1038/nmat4449

####

For more information, please click here

Contacts:
Oli Usher

44-020-767-97964

Copyright © University College London

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Graphene/ Graphite

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Water

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Taking salt out of the water equation October 7th, 2022

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project