Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Room temperature magnetic skyrmions, a new type of digital memory?

Magnetic skyrmions are a type of swirling magnetic structure that maintains its topology. Physicists at UC Davis and NIST have developed nano dots that induce magnetic skyrmions in a film (arrows show magnetic moments).
CREDIT: Kai Liu/UC Davis
Magnetic skyrmions are a type of swirling magnetic structure that maintains its topology. Physicists at UC Davis and NIST have developed nano dots that induce magnetic skyrmions in a film (arrows show magnetic moments).

CREDIT: Kai Liu/UC Davis

Abstract:
An exotic, swirling object with the sci-fi name of a "magnetic skyrmion" could be the future of nanoelectronics and memory storage. Physicists at UC Davis and the National Institute of Standards and Technology (NIST) have now succeeded in making magnetic skyrmions, formerly found at temperatures close to absolute zero, at room temperature.

Room temperature magnetic skyrmions, a new type of digital memory?

Davis, CA | Posted on October 8th, 2015

"This is a potentially new way to store information, and the energy costs are expected to be extremely low," said Kai Liu, professor of physics at UC Davis and corresponding author of a paper on the work, published in the journal Nature Communications Oct. 8.

Skyrmions were originally described over 50 years ago as a type of hypothetical particle in nuclear physics. Actual magnetic skyrmions were discovered only in 2009, as chiral patterns of magnetic moments -- think of a moment as a tiny compass needle -- in materials close to absolute zero temperature, in the presence of a strong magnetic field.

Magnetic skyrmions fall into two types, Liu said: "Bloch skyrmions," with a hurricane-like spiral pattern of magnetic moments around a perpendicular center, surrounded by magnetic moments oriented in the opposite direction to the center; and "hedgehogs," where the magnetic moments orient like spikes on a hedgehog or sea urchin.

The interesting thing about magnetic skyrmions, Liu said, is that they are "topologically protected:" they can be continuously deformed, in the same way that a coffee mug shape can be deformed into a bagel shape, but they do not readily go back into a state where all the magnetic moments are aligned. That means they can potentially store information at an energy cost much lower than current technology, Liu said.

Together with graduate student Dustin Gilbert, now a postdoctoral fellow at NIST, Liu and colleagues designed a nanosynthesis approach to achieve artificial "Bloch" magnetic skyrmions at room temperature. They created a pattern of magnetic nanodots, each about half a micron across, on a multilayered film where the magnetic moments are aligned normal to the plane. They used ion beam irradiation to modify the interface between the dots and the film to allow "imprinting" of the magnetic moments of the dots into the film.

Using neutron-scattering at NIST Center for Neutron Research, they were able to resolve the magnetic profiles along the depth of the hybrid structure. Combined with magnetic imaging studies at NIST and Lawrence Berkeley Laboratory, they were able to find the first direct evidence of arrays of stable spiral magnetic skyrmions beneath the nanodots at room temperature, even without an external magnetic field.

The availability of stable magnetic skyrmions at room temperature opens up new studies on their properties and potential development in electronic devices, such as nonvolatile magnetic memory storage.

Coauthors on the paper are Brian Maranville, Andrew Balk, Brian Kirby, Daniel Pierce, John Unguris and Julie Borchers at NIST, and Peter Fischer, LBL and UC Santa Cruz. Nanofabrication work and other characterizations were carried out in Liu's laboratory and at the Center for Nano and Micro Manufacturing at UC Davis. The work was funded by the National Science Foundation.

####

For more information, please click here

Contacts:
Andy Fell

530-752-4533

Copyright © UC Davis

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Magnetism/Magnons

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Research partnerships

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project