Home > Press > Fractals aid efforts to understand heat transport at nanoscale
![]() |
Researchers for the first time have used a modern theory of heat transport in experiments with semiconductors used in computers, lasers and thermoelectrics. The left image shows a rendering of heat spreading in a semiconductor using the modern transport theory. The image on the right shows a rendering using the conventional heat-transport theory. Purdue University image/ Bjorn Vermeersch and Ali Shakour |
Abstract:
Fractal Lévy Heat Transport in Nanoparticle Embedded Semiconductor Alloys
Amr M. S. Mohammed,† Yee Rui Koh,† Bjorn Vermeersch,† Hong Lu,‡ Peter G. Burke,‡ Arthur C. Gossard,‡ and Ali Shakouri*,†
†Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States ‡Materials Department, University of California, Santa Barbara
Corresponding author: Ali Shakouri,
Materials with embedded nanoparticles are of considerable interest for thermoelectric applications. Here, we experimentally characterize the effect of nanoparticles on the recently discovered Lev́y phonon transport in semiconductor alloys. The fractal space dimension α ≈ 1.55 of quasiballistic (superdiffusive) heat conduction in (ErAs) x:InGaAlAs is virtually independent of the Er content 0.001 < x < 0.1 but instead controlled by alloy scattering of the host matrix. The increased nanoparticle concentration does reduce the diffusive recovery length by an order of magnitude. The bulk conductivity drops by 3-fold, in close agreement with a Callaway model. Our results may provide helpful hints toward engineering superdiffusive heat transport similar to what has been achieved with light in Lev́y glasses.
Researchers for the first time have applied a modern theory of heat transport in experiments with semiconductors used in computers and lasers, with implications for the design of devices that convert waste heat into electricity and the control of overheating in miniaturized and high–speed electronic components.
For more than a century heat transport in solids has been described in terms of the random chaotic motion of "energy carriers" similar to a milk drop dispersing in coffee and gradually transferring heat from hotter to colder regions. However, over the tiny distances of a few nanometers the motion of thermal energy behaves differently and resembles the structure of fractals, which are made up of patterns that repeat themselves at smaller scales infinitely.
"When we look at the problem of heat transport what is surprising is that the theory we use dates back to Fourier, which was 200 years ago, and he developed it to explain how the temperature of the Earth changes," said Ali Shakouri, Purdue University's Mary Jo and Robert L. Kirk Director of the Birck Nanotechnology Center and a professor of electrical and computer engineering. "However, we still use the same theory at the smallest size scale, say tens of nanometers, and the fastest time scale of hundreds of picoseconds."
A team from Purdue and the University of California, Santa Barbara, has applied a theory based on the work of mathematician Paul Lévy in the 1930s, in experiments with the semiconductor indium gallium aluminum arsenide, which is used in high-speed transistors and lasers.
"The work we have done is applying Lévy theory for the first time to heat transport in actual materials experimental work," Shakouri said.
Findings will be presented in December during the Materials Research Society fall meeting in Boston. Findings were detailed in a research paper appeared in July in the journal NanoLetters and featured as a cover story.
The research has shown that inserting nanoparticles made of the alloy erbium arsenide significantly reduces thermal conductivity and doubles the thermoelectric efficiency of the semiconductor. Potential applications include systems to harvest waste heat in vehicles and power plants.
"For example, two-thirds of the energy generated in a car is wasted as heat," Shakouri said. "Even our best power plants waste half or two-thirds of their energy as heat, and that heat could be converted to electricity with thermoelectrics."
Thermoelectric devices generate electricity from heat, and their performance hinges on having a pronounced temperature difference - or gradient - from one side of the device to the other side. Having lower thermal conductivity preserves a greater temperature gradient, improving performance
The nanoparticles cause the material's thermal conductivity to drop three fold without changing the fractal dimension. The energy carriers - quasiparticles called phonons - are said to undergo "quasiballistic" motion, meaning they are transported without colliding with many other particles, causing the heat to conduct with "superdiffusion." The approach mimics the effect of "Lévy glasses," materials containing spheres of glass that change the diffusion of light passing through. The same principle can be used to design semiconductors that diffuse heat differently than conventional materials. In addition to thermoelectrics, the approach could be used to reduce heating in electronics and improve performance for high-speed devices and high-power lasers.
The Nano Letters paper was authored by Purdue graduate students Amr M. S. Mohammed and Yee Rui Koh; Purdue postdoctoral research associate Bjorn Vermeersch; Hong Lu, a postdoctoral researcher at UCSB; UCSB graduate student Peter G. Burke; Arthur C. Gossard, a UCSB research professor and professor emeritus in materials and electrical and computer engineering; and Shakouri.
The research was funded by the U.S. Department of Energy.
####
For more information, please click here
Contacts:
Writer:
Emil Venere
765-494-4709
Source:
Ali Shakouri
765-496-6105
Copyright © Purdue University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Chip Technology
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Discoveries
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025
Announcements
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Leading the charge to better batteries February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Photonics/Optics/Lasers
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |