Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A necklace of fractional vortices

A route to a time-reversal symmetry-broken state for d-wave superconductors is shown to occur via the formation of a necklace of fractional vortices around the perimeter of the material, where neighboring vortices have opposite current circulation. This vortex pattern is a result of a spectral rearrangement of current-carrying states near the edges.
CREDIT: Mikael Håkansson
A route to a time-reversal symmetry-broken state for d-wave superconductors is shown to occur via the formation of a necklace of fractional vortices around the perimeter of the material, where neighboring vortices have opposite current circulation. This vortex pattern is a result of a spectral rearrangement of current-carrying states near the edges.

CREDIT: Mikael Håkansson

Abstract:
Researchers at Chalmers University of Technology have arrived at how what is known as time-reversal symmetry can break in one class of superconducting material. The results have been published in the highly ranked Nature Physics journal, which also put the Chalmers researchers' study on the cover.

A necklace of fractional vortices

Gothenburg, Sweden | Posted on October 5th, 2015

"Symmetries are an important aspect when describing nature", says Mikael Fogelström, who is a professor of theoretical physics at Chalmers University of Technology. "A ball is round and looks the same regardless of how we rotate it; thus, it has rotational symmetry. In the same way, most materials have symmetries that describe what the materials look like and what their properties are. If one or more symmetries breaks, this signals a phase transition to a new state. When a material becomes magnetic, a more abstract symmetry, what is known as time-reversal symmetry, is broken".

Superconducting materials conduct electric current without loss of energy. In 1986, researchers discovered that a family of perovskite materials - that have two-dimensional copper-oxide planes - becomes superconductive at relatively high temperatures. It could also thereafter be fairly quickly ascertained by experiments that the superconducting phase also broke the crystal symmetry, and that the material was unusual in this respect.

Theoreticians pondered whether the materials could also break time-reversal symmetry and produce spontaneous magnetisation. Experiments, primarily related to electron transport, showed that this was the case, while another category of experiments aimed at directly measuring the spontaneous magnetisation demonstrated no effect.

"Our work has arrived at a new mechanism for breaking time-reversal symmetry in high-temperature superconductors" says Tomas Löfwander, who is one of the researchers behind the new results. "We maintain that this has probably already been observed and that the two sets of experiments do not contradict one another."

The Chalmers researchers' discovery is based on a software package that researcher Mikael Håkansson developed while completing his licentiate thesis at the Division of Applied Quantum Physics at MC2, in order to produce a theoretical model of small mesoscopic superconducting grains. The software package utilises massive parallelisation of the numeric work, which can then be processed in graphics processing units, or GPUs.

"The time required to perform the fairly demanding computations was significantly reduced, and we were able to focus more on the physics and simulate more realistic systems", explains Mikael Håkansson. "At the same time, I developed a tool to process and visualise the large amounts of data that the software produced. The cover of the September issue of Nature Physics shows how the electron state is distributed in energy along a surface of a high-temperature superconductor when it has broken the time-reversal symmetry."

The computational tool has allowed the Chalmers researchers to investigate cases where the ring of a superconducting crystal affects the force of the superconducting phase. A periodic pattern of vortices spontaneously forms in the shape of a necklace along the surface as soon as the temperature is lower than a limit temperature. These vortices in turn cause a spontaneous magnetic flux that alternates direction on a length scale of a few dozen nanometers.

"We believe that new results with what are known as nanosquids, which are magnetometers with extremely good resolution, will be able to give immediate experimental verification of our results," says Mikael Fogelström.

####

For more information, please click here

Contacts:
Johanna Wilde

46-317-722-029

Copyright © Chalmers University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the article "Spontaneously broken time-reversal symmetry in high-temperature superconductors" in Nature Physics:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Superconductivity

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Finding quantum order in chaos May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project