Home > Press > Crystal clear: Thousand-fold fluorescence enhancement in an all-polymer thin film: Griffith University researchers report breakthrough due to novel and multi-layer Colloidal Photonic Crystal structure
Dr. Qin Li is from Griffith University's Micro- and Nanotechnology Centre.
CREDIT: Griffith University |
Abstract:
Griffith University scientists have made a remarkable breakthrough in the field of fluorescence enhancement via a discovery they believe could drive the next advances in sensor technology, energy saving and harvesting, lasers and optoelectronics.
A research team led by Dr Qin Li, from Griffith's Queensland Micro- and Nanotechnology Centre, is reporting unparalleled magnitude of fluorescence enhancement due to a novel and multi-layer Colloidal Photonic Crystal (CPhC) structure.
According to Dr Li, the researchers discovered that a double heterostructure tri-layer CPhC - with the stopband of top and bottom layers overlapping the excitation wavelength, a middle CPhC layer in resonance with the emission wavelength, and a thickness supporting constructive multiple beam interference for excitation light -- resulted in a thousand-fold fluorescence enhancement in an all-polymer structure compared to that achieved by the same amount of dyes on glass substrate.
"Furthermore, we found that the enhancement of fluorescence intensity due to the double heterostructure is almost six times that of monolithic CPhCs," says Dr Li.
"What is even more intriguing is that the emission lifetime constant has been shortened by fourfold," says Dr Li.
The findings are the culmination of two years of research involving teams from Australia and China, including world-leading scientists in nanochemistry and optics.
Their paper, Anomalous Fluorescence Enhancement from Double Heterostructure 3D Colloidal Photonic Crystals -- A Multifunctional Fluorescence-Based Sensor Platform, is published in the journal Scientific Reports.
As well as demonstrating the potential for highly effective performance in ultra-sensitive sensing -- with multiple functions including signal enhancement, ease in immobilisation and protection for sensing agents -- the research paper presents evidence of significant improvements in energy efficiency and flexibility for lighting devices.
"By using our double heterostructure CPhCs, we can give LEDs a significant increase in energy efficiency and flexibility in colour tuning and colour mixing," says Dr Li.
She adds that in fluorescence-based sensing technologies, improving signal to noise ratio is of paramount significance for improving sensitivity and reliability.
The enormous fluorescence enhancement demonstrated by double heterostructure CPhC will give a significant boost to push the limit.
There are also practical and economic benefits to the Griffith discovery.
"Colloidal photonic crystals can be conveniently made into array systems in mass production fashion, for example by inkjet printing method or by pintool plotter," says Dr Li.
"Both materials and fabrication methods are inexpensive and scalable."
####
For more information, please click here
Contacts:
Michael Jacobson
61-075-552-9250
Copyright © Griffith University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Display technology/LEDs/SS Lighting/OLEDs
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Optical computing/Photonic computing
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes
Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
Simple ballpoint pen can write custom LEDs August 11th, 2023
Disposable electronics on a simple sheet of paper October 7th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||