Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Pioneering research develops new way to capture light -- for the computers of tomorrow

Pioneering research has developed techniques that will allow the first memory chip that can capture light.
Pioneering research has developed techniques that will allow the first memory chip that can capture light.

Abstract:
Pioneering research by an international team of scientists, including from the University of Exeter, has developed techniques that will allow the first memory chip that can capture light.

Pioneering research develops new way to capture light -- for the computers of tomorrow

Exeter, UK | Posted on September 23rd, 2015

The key breakthrough will allow large quantities of data to be stored directly on an integrated optical chip, rather than being processed and stored electronically, as happens today.

Light is ideally suited to ultra-fast high-bandwidth data transfer, and optical communications form an indispensable part of the IT world of today and tomorrow. However, a stumbling block so far has been the storage of large quantities of data directly on integrated chips in the optical domain.

While optical fibre cables - and with them, data transfer by means of light - have long since become part of our everyday life, data on a computer are still processed and stored electronically.

The team of scientists from Germany and England have made a key breakthrough by capturing light on an integrated chip, so developing the first permanent, all-optical on-chip memory.

The research is published in leading scientific journal, Nature Photonics.

Professor David Wright, from the University of Exeter's Engineering department said: "With our prototype we have, for the first time, a nanoscale integrated optical memory that could open up the route towards ultra-fast data processing and storage. Our technology might also eventually be used to reproduce in computers the neural-type processing that is carried out by the human brain."

Professor Wolfram Pernice, from the Institute of Physics at Münster University and who led the work said: "The all-optical memory devices we have developed provide opportunities that go far beyond any of the approaches to optical data processing available today."

"Optical bits can be written in our system at frequencies of up to a gigahertz or more," adds Professor Harish Bhaskaran from Oxford University in England, one of the lead co-authors, "and our approach can define a new speed limit for future processors, by delivering extremely fast on-chip optical data storage" In addition, he says, "the written state is preserved when the power is removed, unlike most current on-chip memories".

The scientists from Oxford, Exeter, Karlsruhe and Münster used so-called phase change materials at heart of their all-optical memory. The distinguishing feature of these materials is that they radically change their optical properties depending their phase state, i.e. depending on the arrangement of the atoms in the material. This changeability - between crystalline (regular) and amorphous (irregular) states - allowed the team to store many bits in a single integrated nanoscale optical phase-change cell.

####

For more information, please click here

Contacts:
Press Office

Copyright © University of Exeter

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Optical computing/Photonic computing

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project