Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Pioneering research develops new way to capture light -- for the computers of tomorrow

Pioneering research has developed techniques that will allow the first memory chip that can capture light.
Pioneering research has developed techniques that will allow the first memory chip that can capture light.

Abstract:
Pioneering research by an international team of scientists, including from the University of Exeter, has developed techniques that will allow the first memory chip that can capture light.

Pioneering research develops new way to capture light -- for the computers of tomorrow

Exeter, UK | Posted on September 23rd, 2015

The key breakthrough will allow large quantities of data to be stored directly on an integrated optical chip, rather than being processed and stored electronically, as happens today.

Light is ideally suited to ultra-fast high-bandwidth data transfer, and optical communications form an indispensable part of the IT world of today and tomorrow. However, a stumbling block so far has been the storage of large quantities of data directly on integrated chips in the optical domain.

While optical fibre cables - and with them, data transfer by means of light - have long since become part of our everyday life, data on a computer are still processed and stored electronically.

The team of scientists from Germany and England have made a key breakthrough by capturing light on an integrated chip, so developing the first permanent, all-optical on-chip memory.

The research is published in leading scientific journal, Nature Photonics.

Professor David Wright, from the University of Exeter's Engineering department said: "With our prototype we have, for the first time, a nanoscale integrated optical memory that could open up the route towards ultra-fast data processing and storage. Our technology might also eventually be used to reproduce in computers the neural-type processing that is carried out by the human brain."

Professor Wolfram Pernice, from the Institute of Physics at Münster University and who led the work said: "The all-optical memory devices we have developed provide opportunities that go far beyond any of the approaches to optical data processing available today."

"Optical bits can be written in our system at frequencies of up to a gigahertz or more," adds Professor Harish Bhaskaran from Oxford University in England, one of the lead co-authors, "and our approach can define a new speed limit for future processors, by delivering extremely fast on-chip optical data storage" In addition, he says, "the written state is preserved when the power is removed, unlike most current on-chip memories".

The scientists from Oxford, Exeter, Karlsruhe and Münster used so-called phase change materials at heart of their all-optical memory. The distinguishing feature of these materials is that they radically change their optical properties depending their phase state, i.e. depending on the arrangement of the atoms in the material. This changeability - between crystalline (regular) and amorphous (irregular) states - allowed the team to store many bits in a single integrated nanoscale optical phase-change cell.

####

For more information, please click here

Contacts:
Press Office

Copyright © University of Exeter

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Chip Technology

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Memory Technology

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Optical computing/Photonic computing

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Programmable electron-induced color router array May 14th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project