Home > Press > New optical chip lights up the race for quantum computer
This is the silicon based quantum optics lab-on-a-chip. CREDIT: University of Bristol |
Abstract:
The microprocessor inside a computer is a single multipurpose chip that has revolutionised people's life, allowing them to use one machine to surf the web, check emails and keep track of finances.
Now, researchers from the University of Bristol in the UK and Nippon Telegraph and Telephone (NTT) in Japan, have pulled off the same feat for light in the quantum world by developing an optical chip that can process photons in an infinite number of ways.
It's a major step forward in creating a quantum computer to solve problems such as designing new drugs, superfast database searches, and performing otherwise intractable mathematics that aren't possible for super computers.
The fully reprogrammable chip brings together a multitude of existing quantum experiments and can realise a plethora of future protocols that have not even been conceived yet, marking a new era of research for quantum scientists and engineers at the cutting edge of quantum technologies. The work is published in the journal Science on 14 August.
Since before Newton held a prism to a ray of sunlight and saw a spectrum of colour, scientists have understood nature through the behaviour of light. In the modern age of research, scientists are striving to understand nature at the quantum level and to engineer and control quantum states of light and matter.
A major barrier in testing new theories for quantum science and quantum computing is the time and resources needed to build new experiments, which are typically extremely demanding due to the notoriously fragile nature of quantum systems.
This result shows a step change for experiments with photons, and what the future looks like for quantum technologies.
Dr Anthony Laing, who led the project, said: "A whole field of research has essentially been put onto a single optical chip that is easily controlled. The implications of the work go beyond the huge resource savings. Now anybody can run their own experiments with photons, much like they operate any other piece of software on a computer. They no longer need to convince a physicist to devote many months of their life to painstakingly build and conduct a new experiment."
The team demonstrated the chip's unique capabilities by re-programming it to rapidly perform a number of different experiments, each of which would previously have taken many months to build.
Bristol PhD student Jacques Carolan, one of the researchers, added: "Once we wrote the code for each circuit, it took seconds to re-programme the chip, and milliseconds for the chip to switch to the new experiment. We carried out a year's worth of experiments in a matter of hours. What we're really excited about is using these chips to discover new science that we haven't even thought of yet."
The device was made possible because the world's leading quantum photonics group teamed up with Nippon Telegraph and Telephone (NTT), the world's leading telecommunications company.
Professor Jeremy O'Brien, Director of the Centre for Quantum Photonics at Bristol University, explained: "Over the last decade, we have established an ecosystem for photonic quantum technologies, allowing the best minds in quantum information science to hook up with established research and engineering expertise in the telecommunications industry. It's a model that we need to encourage if we are to realise our vision for a quantum computer."
The University of Bristol's pioneering 'Quantum in the Cloud' is the first and only service to make a quantum processor publicly accessible and plans to add more chips like this one to the service so others can discover the quantum world for themselves.
####
For more information, please click here
Contacts:
Philippa Walker
44-117-928-7777
Copyright © University of Bristol
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Lab-on-a-chip
Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime Peer-Reviewed Publication September 24th, 2021
Silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm March 13th, 2020
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Quantum Computing
New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Optical computing/Photonic computing
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||