Home > Press > New spectroscopy technique provides unprecedented insights about the reactions powering fuel cells Nanotech-enabled chip developed at UCLA can analyze chemical reactions more accurately than large machines
Tunde Akinloye for CNSI CNSI scientists developed this nanoelectronic chip for use in a new technique called electrical transport spectroscopy. |
Abstract:
Researchers at UCLA’s California NanoSystems Institute have developed a dramatically advanced tool for analyzing how chemicals called nanocatalysts convert chemical reactions into electricity.
Current spectroscopy methods require large laboratory machines to measure chemical reactions, but the new technique uses a nanoelectronic chip to do the same thing while the reactions are taking place — which previously was very difficult — with better accuracy, and while gathering a completely new set of data.
Being able to analyze these reactions with increased accuracy, heightened sensitivity and greater cost-effectiveness will vastly improve scientists’ understanding of nanocatalysts, which will enable the development of new environmentally friendly fuel cells that are more efficient, more durable and less expensive to produce. Eventually, those new fuel cells could be used to power vehicles that run on hydrogen, the 10th most abundant element on Earth, and give off water as exhaust.
The work was led by Xianfeng Duan, a UCLA professor of chemistry and biochemistry, and Yu Huang, a professor of materials science and engineering; Mengning Ding, a UCLA postdoctoral scholar in materials science and engineering, was the first author of the study, which was published online in the journal Nature Communications.
Fuel cells and hydrogen batteries are already an important source of green energy, and they are becoming more widely used as they become more powerful and efficient. But further advances will require scientists and engineers to better understand how energy technologies work and to more accurately measure the chemical reactions that make them function.
Of particular interest is gaining a better understanding of nanocatalysts, which facilitate electrochemical interactions with the materials on the devices’ surfaces at the nano level. (One nanometer is equal in distance to one-billionth of a meter, or about one ten-thousandth the width of a human hair.)
“Normally, spectroscopy is used for this kind of analysis,” Duan said. “But conventional techniques are difficult for in situ, or active, electrochemical studies. On-chip electrical transport measurements enable us to directly probe the electrochemical surfaces of metallic nanocatalysts while they are in action. This has allowed us to access a completely new set of information about electrocatalysts.”
The device’s tiny size is what enables scientists to study the reactions while they are taking place on the materials’ surfaces. It has given the UCLA team an unprecedented look at how and why nanocatalysts work or fail under certain conditions, and it has enabled vastly more accurate measurements and new insights into various electrochemical reactions.
The researchers hope the new data enables them to develop better nanocatalysts which, in turn, would lead to improved batteries and fuel cells.
“Now a single chip can detect signals we were unaware of before,” Huang said. “If we know exactly what happens at the surface of these materials, we can develop more efficient materials. Fuel cells are becoming more widely recognized as a powerful future technology, and nanocatalysts are the most expensive component, inhibiting widespread adoption of the technology. This new technique will help us understand and develop better and cheaper catalysts, allowing the technology to reach its full potential.”
Duan said the technique has many other potential uses. For example, the team already is using a similar approach to understand how certain microbes conduct electricity and efficiently convert chemical substrates into electrical energy.
The research was supported by the Office of Naval Research and the National Science Foundation. The study’s other authors were Qiyuan He and Gongming Wang, both UCLA chemistry and biochemistry postdoctoral scholars, and Hung-Chieh Cheng, a UCLA graduate student in materials science.
####
For more information, please click here
Contacts:
Shaun Mason
310-794-5346
Copyright © UCLA
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Military
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Fuel Cells
Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||