Home > Press > Fundamental observation of spin-controlled electrical conduction in metals: Ultrafast terahertz spectroscopy yields direct insight into the building block of modern magnetic memories
![]() |
Difference in conduction by electrons with opposite spins in ferromagnetic metals can be precisely resolved using terahertz waves. CREDIT: © MPI-P |
Abstract:
Mainz/Aveiro/Bielefeld/Berlin. Modern magnetic memories, such as hard drives installed in almost every computer, can store a very large amount of information thanks to very tiny, nanoscale magnetic sensors used for memory readout. The operation of these magnetic sensors, called the spin-valves, is based on the effect of giant magnetoresistance (GMR), for which its inventors Albert Fert and Peter Gruenberg were awarded a Nobel Prize in Physics in 2007.
The GMR effect is based on the idea of electrical conduction in ferromagnetic metals, proposed by Sir Nevill F. Mott as early as in 1936. In Mott's picture, the conduction electrons in ferromagnetic metals experience scattering depending on their microscopic magnetic moment - the spin. That is, the electrons with one spin orientation scatter less and are therefore more conductive than the electrons with the opposite spin orientation. This spin-asymmetry in electron conduction is greatly amplified when the thin films of ferromagnetic and nonmagnetic metals are combined together to form a spin-valve in which electrical resistivity becomes very sensitive to the magnetic field, leading to a GMR effect.
Even though the Mott spin-dependent conductivity is at the heart of magnetic memories and many other technologies, its direct observation has been a long time challenge. Indeed the fundamental parameters of Mott conduction - spin-dependent electron scattering time and spin-dependent electron density - can be directly and unambiguously determined only if the conductivity of the metal is measured on the same ultrafast timescale at which the electron scattering occurs, that is sub-100 femtosecond (1 fs = 10-15 s, i.e. one millionth of one billionth of a second). For many decades, such an extremely fast timescale of experimental measurement precluded the observation of magnetotransport in metals on the fundamental level.
In a collaborative work carried out by the research groups at the Max Planck Institute for Polymer Research (MPI-P) and the Johannes Gutenberg University (JGU), with the contribution of Sensitec GmbH and the Fritz Haber Institute of the Max Planck Society, the scientists managed to break the speed barrier for fundamental magnetotransport measurements by using a method called ultrafast terahertz spectroscopy (1 THz = 1012 Hz, i.e. one thousand billion oscillations per second). "By studying the interaction of THz electromagnetic waves - which oscillate about as fast as the electrons in metal scatter their momentum - with a spin-valve, we could directly measure for the first time the fundamental parameters of Mott conduction", explains Dmitry Turchinovich, project leader at the MPI-P. "In particular, we found that the traditional measurements performed on the slower timescales significantly underestimate the spin-asymmetry in electron scattering which is responsible for the magnetic sensor operation".
The results of the research team: Zuanming Jin, Alexander Tkach, Frederick Casper, Victor Spetter, Hubert Grimm, Andy Thomas, Tobias Kampfrath, and Mischa Bonn, led by Dmitry Turchinovich (MPI-P) and Mathias Klaeui (JGU) have recently been published in Nature Physics.
This work adds a new and powerful tool, ultrafast THz spectroscopy, to the studies in spintronics, opening up a new research field - terahertz spintronics.
####
For more information, please click here
Contacts:
Natacha Bouvier
49-613-137-9132
Copyright © Max Planck Institute for Polymer Research
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Spintronics
Quantum materials: Electron spin measured for the first time June 9th, 2023
Chip Technology
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Research partnerships
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |