Home > Press > Iranian Scientists Find Simple, Economic Method to Synthesize Antibacterial Nanoparticles
Abstract:
Iranian researchers produced a new type of nanoparticles that can be used in medical and pharmaceutical industries due to their antibacterial properties.
The nanoparticles can also be used as visible light sensitive photocatalyst in the purification of water contaminated by medical wastes.
Enrofloxacin is an artificial antibiotic that has acceptable therapeutic performance against a wide range of bacteria, and is used for the treatment of infections in various animals. Excess consumption of this antibiotic in the production of meat strengthens the bacteria against enrofloxacin antibiotic. Therefore, the remaining of this drug in the produced meat may have undesirable effects on humans as the consumers of the products. Moreover, the existence of this type of antibiotic in water results in malignant cancers and digestive malfunctions, including stomach infection, nausea and dysentery.
This research tries to synthesize tin sulfide nanoparticles through an economic and efficient method and use them in the adsorption and degradation of enrofloxacin antibiotic under the radiation of a light. It also studies the antibacterial effects of these nanoparticles on Escherichia coli and Staphylococcus aureus bacteria.
According to the researchers, these nanoparticles can be used in the purification of industrial wastewater, specially in pharmaceutics. These nanoparticles can also be used in medical and pharmaceutical industries as inhibitors to prevent the growth of bacteria due to their antibacterial properties.
Results of the research have been published in Solar Energy, vol. 117, issue 1, 2015, pp. 187-191.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Industrial
Quantum interference in molecule-surface collisions February 28th, 2025
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||