Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New heterogeneous wavelength tunable laser diode for high-frequency efficiency

The novel heterogeneous wavelength tunable laser diode consists of QD technology and silicon photonics.
CREDIT: Tomohiro Kita
The novel heterogeneous wavelength tunable laser diode consists of QD technology and silicon photonics.

CREDIT: Tomohiro Kita

Abstract:
Researchers at Tohoku University and the National Institute of Information and Communications Technology (NICT) in Japan, have developed a novel ultra-compact heterogeneous wavelength tunable laser diode. The heterogeneous laser diode was realized through a combination of silicon photonics and quantum-dot (QD) technology, and demonstrates a wide-range tuning-operation.

New heterogeneous wavelength tunable laser diode for high-frequency efficiency

Sendai, Japan | Posted on June 2nd, 2015

The researchers presented their work at a Conference on Lasers and Electro-Optics (CLEO) in San Jose, California, on May 13. The related paper was also be published in Applied Physics Express vol. 8, 062701 on May 20.

Recent high-capacity optical transmission systems are based on wavelength-division multiplexing (WDM) systems with dense frequency channels. The frequency channels in C-band (conventional band: 1530- 1565 nm) are overcrowded and the frequency utilization efficiency is saturated in such WDM systems. On the other hand, extensive and unexploited frequency resources are buried in near-infra-red wavelengths (1000-1300 nm). Additionally, photonic devices are required to have smaller footprints and lower power consumption in short- reach data transmission. The compact and low power consumption wavelength tunable laser diode is a key device to tap the undeveloped frequency bands for higher capacity data transmission systems.

The heterogeneous wavelength tunable laser diode, consisting of the QD and the silicon photonics, is a promising candidate to realize such a compact and broad-band light source. This is because the QD has large optical gains of around 1000 -1300 nm wavelength, and silicon photonics provide a promising platform for highly integrated photonics devices - so a novel wavelength-tunable laser diode, combining QD and silicon photonics technologies, was proposed.

The cooperative research group led by Tomohiro Kita and Naokatsu Yamamoto demonstrated a wide range tuning operation of around 1250 nm wavelength with an ultra-small device footprint. The obtained frequency tuning-range of 8.8 THz is a world record for the category of QD and silicon photonics heterogeneous wavelength tunable laser diodes. It is expected that the fusing of the QD technology and silicon photonics will provide a breakthrough for the development of an effective and compact light source.

###

This research was partially supported by the Strategic Information and Communications R&D Promotion Program (SCOPE) of Japan's Ministry of Internal Affairs and Communications.

####

For more information, please click here

Contacts:
Dr. Tomohiro Kita

81-227-957-102

Copyright © Tohoku University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Chip Technology

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Optical computing/Photonic computing

Programmable electron-induced color router array May 14th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Quantum Dots/Rods

A new kind of magnetism November 17th, 2023

IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

Photonics/Optics/Lasers

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

Programmable electron-induced color router array May 14th, 2025

Research partnerships

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project