Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Defects in atomically thin semiconductor emit single photons: Researchers create optically active quantum dots in 2-D semiconductor for the first time; may have applications for integrated photonics

Abstract:
Researchers at the University of Rochester have shown that defects on an atomically thin semiconductor can produce light-emitting quantum dots. The quantum dots serve as a source of single photons and could be useful for the integration of quantum photonics with solid-state electronics - a combination known as integrated photonics.

Defects in atomically thin semiconductor emit single photons: Researchers create optically active quantum dots in 2-D semiconductor for the first time; may have applications for integrated photonics

Rochester, NY | Posted on May 4th, 2015

Scientists have become interested in integrated solid-state devices for quantum information processing uses. Quantum dots in atomically thin semiconductors could not only provide a framework to explore the fundamental physics of how they interact, but also enable nanophotonics applications, the researchers say.

Quantum dots are often referred to as artificial atoms. They are artificially engineered or naturally occurring defects in solids that are being studied for a wide range of applications. Nick Vamivakas, assistant professor of optics at the University of Rochester and senior author on the paper, adds that atomically thin, 2D materials, such as graphene, have also generated interest among scientists who want to explore their potential for optoelectronics. However, until now, optically active quantum dots have not been observed in 2D materials.

In a paper published in Nature Nanotechnology this week, the Rochester researchers show how tungsten diselenide (WSe2) can be fashioned into an atomically thin semiconductor that serves as a platform for solid-state quantum dots. Perhaps most importantly the defects that create the dots do not inhibit the electrical or optical performance of the semiconductor and they can be controlled by applying electric and magnetic fields.

Vamivakas explains that the brightness of the quantum dot emission can be controlled by applying the voltage. He adds that the next step is to use voltage to "tune the color" of the emitted photons, which can make it possible to integrate these quantum dots with nanophotonic devices.

A key advantage is how much easier it is to create quantum dots in atomically thin tungsten diselenide compared to producing quantum dots in more traditional materials like indium arsenide.

"We start with a black crystal and then we peel layers of it off until we have an extremely thin later left, an atomically thin sheet of tungsten diselenide," said Vamivakas.

The researchers take two of these atomically thin sheets and lay one over the other one. At the point where they overlap, a quantum dot is created. The overlap creates a defect in the otherwise smooth 2D sheet of semiconductor material. The extremely thin semiconductors are much easier to integrate with other electronics.

The quantum dots in tungsten diselenide also possess an intrinsic quantum degree of freedom - the electron spin. This is a desirable property as the spin can both act as a store of quantum information as well as provide a probe of the local quantum dot environment.

"What makes tungsten diselenide extremely versatile is that the color of the single photons emitted by the quantum dots is correlated with the quantum dot spin," said first author Chitraleema Chakraborty. Chakraborty added that the ease with which the spins and photons interact with one another should make these systems ideal for quantum information applications as well as nanoscale metrology.

###

The paper, "Voltage controlled quantum light from an atomically thin semiconductor," was published online by Nature Nanotechnology on May 4, 2015. Apart from Vamivakas and Chakraborty, the team also included Laura Kinnischtzke, Kenneth M. Goodfellow, and Ryan Beams from the University of Rochester.

The researchers acknowledge funding from the National Science Foundation (DMR-1309734).

####

Copyright © University of Rochester

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Graphene/ Graphite

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Optical computing/Photonic computing

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Quantum Dots/Rods

A new kind of magnetism November 17th, 2023

IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project