Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Rutgers, NIST physicists report technology with potential for sub-micron optical switches

Surface plasmons are propagating electronic oscillations localized to metal-insulator (e.g. gold-air) interfaces. Gap plasmons (GPs) arise when two such interfaces are separated by a narrow gap across the insulator layer, transversely confining the electromagnetic energy in an MIM (metal-insulator-metal) waveguide. In this illustration, a free-space excitation laser (vertical light on the right) couples to GPs (alternating red/blue light) in a gold/air/gold nanofabricated waveguide. A grating is used to match the laser light momentum with to a GP. The GP propagates through the waveguide under free-floating micro-beams in the top gold layer (color coded to show depth). When the beams are electrically actuated towards the bottom gold layer, the effective refractive index of the waveguide increases under the beams, phase-retarding the GP.
CREDIT: Brian Dennis, Rutgers University
Surface plasmons are propagating electronic oscillations localized to metal-insulator (e.g. gold-air) interfaces. Gap plasmons (GPs) arise when two such interfaces are separated by a narrow gap across the insulator layer, transversely confining the electromagnetic energy in an MIM (metal-insulator-metal) waveguide. In this illustration, a free-space excitation laser (vertical light on the right) couples to GPs (alternating red/blue light) in a gold/air/gold nanofabricated waveguide. A grating is used to match the laser light momentum with to a GP. The GP propagates through the waveguide under free-floating micro-beams in the top gold layer (color coded to show depth). When the beams are electrically actuated towards the bottom gold layer, the effective refractive index of the waveguide increases under the beams, phase-retarding the GP.

CREDIT: Brian Dennis, Rutgers University

Abstract:
A team that includes Rutgers University and National Institute of Standards and Technology scientists believes that a technology it is reporting this week in Nature Photonics could result in optical switches with sub-square-micron footprints, potentially allowing densely packed switching fabrics on a chip.

Rutgers, NIST physicists report technology with potential for sub-micron optical switches

New Brunswick, NJ | Posted on March 31st, 2015

These dimensions contrast with established optical switching technologies based on other technologies, such as MEMS, lithium niobate, and silicon and electro-optic polymer plasmonic technologies, that have active elements in scales up to hundreds of microns.

The scientists have shown that an optical signal can be modulated in a 200 nanometer-high waveguide. The signal's phase is modulated as it passes through an air gap between two gold layers, when a force generated by the device slightly deforms the top gold layer.

The scientists propose that when one of these modulators is placed next to a similar static device, it could act as a 2x2 switch, based on evidence reported elsewhere of coupling between adjacent waveguides. The technology could also be useful for electrically tunable plasmonic devices.

Their paper describes "compact nanomechanical plasmonic phase modulators." The scientists experimentally verified such devices in a 23 micron-long waveguide with a gap in the range of 200 nm, but they make a case based on computer modeling that the waveguides can be scaled to as little as 1 micron long with a 20 nm gap, without significant loss. This means optical switches could be scaled closer to electronic device dimensions.

###

The paper's authors are Brian Dennis, Michael Haftel, David Czaplewski, Daniel Lopez, Girsh Blumberg and Vladimir Aksyuk. Funding for this research was provided primarily by the National Institute of Standards and Technology and by the Air Force Office of Scientific Research. The work was performed at the NIST Center for Nanoscale Science and Technology - a national nanotechnology user facility.

####

For more information, please click here

Contacts:
Carl Blesch

848-932-0550
@RutgersU
http://www.rutgers.edu

Mark Esser

301-975-8735
NIST

Copyright © Rutgers University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Optical computing/Photonic computing

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project