Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists invent new way to control light, critical for next gen of super fast computing

UCF's team works in the lab.
CREDIT: UCF
UCF's team works in the lab.

CREDIT: UCF

Abstract:
A device resembling a plastic honeycomb yet infinitely smaller than a bee's stinger can steer light beams around tighter curves than ever before possible, while keeping the integrity and intensity of the beam intact.

Scientists invent new way to control light, critical for next gen of super fast computing

Orlando, FL | Posted on March 19th, 2015

The work, conducted by researchers at the University of Texas El Paso (UTEP) and at the University of Central Florida (UCF) and published in the journal Optics Express, introduces a more effective way to transmit data rapidly on electronic circuit boards by using light.

Sending information on light beams, instead of electrical signals, allows data to be transmitted thousands of times more quickly. But controlling the light beams without losing their energy has been the challenge. Microchip and computer manufacturers however, are increasingly looking to light as the best way to overcome speed bottlenecks associated with today's electronics.

"Computer chips and circuit boards have metal wire connections within them that transport data signals," said Raymond Rumpf, professor of electrical and computer engineering at UTEP. "One of challenges when using light is figuring out a way to make tight bends so we can replace the metal wiring more effectively."

That's where UCF comes in.

"Direct laser writing has the potential to become a flexible means for manufacturing next-generation computer devices," said Stephen Kuebler, associate professor of chemistry at UCF.

Kuebler and his students used direct laser writing, a kind of nanoscale 3D printing, to create the miniature lattices. The team then ran light beams through the lattices and confirmed that they could flow light without loss through turns that are twice as tight as any done previously.

The finding is significant because with the demand for ever-smaller and faster computers and hand-held devices, engineers need ways to pack ultra-fast data-transmission devices into smaller spaces.

Conventional light waveguides, like optical fibers, can be used to steer light through turns. But the turns must be gradual. If the turn is too quick, the light beams escape and energy is lost.

To make ultra-sharp turns, the team designed the plastic devices so that its lattice steers the beam around corners without losing energy.

The UTEP-UCF team's technology creates a new record in the field of optics for its ability to bend light beams. Kuebler said the team is now working to double that record, creating a lattice that will turn the light through an even tighter turn.

Rumpf, who runs UTEP's Electromagnetic Lab, envisions this groundbreaking technology will first appear in high-performance super computers before it can be found in people's everyday laptops.

###

Kuebler earned the Ph.D. in chemistry from the University of Oxford. He joined UCF in 2003 through an appointment in Chemistry and CREOL, The College of Optics & Photonics. His research has been continuously funded by the National Science Foundation (NSF) and industry. In 2007 he received the NSF CAREER Award. His teaching has been recognized with Teaching Incentive Program awards (2008, 2014) and Excellence in Undergraduate Teaching awards (2008, 2015) from the UCF College of Sciences.

####

For more information, please click here

Contacts:
Zenaida Gonzalez Kotala

407-823-6120

Copyright © University of Central Florida

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Optical computing/Photonic computing

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Photonics/Optics/Lasers

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project