Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > FEI Joins University of Ulm and CEOS on SALVE Project Research Collaboration: The Sub-Ångström Low Voltage Electron (SALVE) microscope should improve contrast and reduce damage on bio-molecules and two-dimensional nanomaterials, such as graphene

Abstract:
FEI (NASDAQ: FEIC) announced today that it has entered into an agreement with Germany's University of Ulm and Heidelberg-based CEOS GmbH to develop a sub-Ǻngström low-voltage electron microscope, in the frame of Uni-Ulm's SALVE project. The multi-year collaboration will involve the planned development of a dedicated aberration-corrected transmission electron microscope (TEM) that is capable of imaging radiation-sensitive materials, such as two-dimensional (2D) and organic samples, and selected molecules, with molecular or even atomic-scale resolution. The TEM is also expected to provide spectroscopic information at very low acceleration voltages.

FEI Joins University of Ulm and CEOS on SALVE Project Research Collaboration: The Sub-Ångström Low Voltage Electron (SALVE) microscope should improve contrast and reduce damage on bio-molecules and two-dimensional nanomaterials, such as graphene

Hillsboro, OR | Posted on March 18th, 2015

"Current-generation TEMs typically operate at high voltages of up to 300kV, which provides limited contrast and destroys radiation-sensitive samples before they can be imaged," states Trisha Rice, vice president and general manager of Materials Science at FEI. "The SALVE project is focused on designing a TEM that can operate at accelerating voltages as low as 20kV, enabling it to provide new structural and spectroscopic information of samples, which previously could not be imaged because they would be destroyed at the higher voltages."

CEOS, which has expertise in corrected electron optical systems, is focused on developing new optimized corrector technology to compensate for the chromatic and spherical aberration at low voltages. FEI will be developing the TEM system itself, which will be based on a Titan™ 80-300 TEM platform, one of the world's first and most powerful commercial aberration-corrected microscopes. While the University of Ulm is working on application-related development, including sample preparation methods and the theory of imaging with low-energetic electrons.

"The SALVE project, financially supported by the German Research Foundation (DFG) and the Ministry of Science, Research and the Arts, Baden Württemberg, Germany, started in 2008 and progress has been made," states the project leader, Professor Ute Kaiser, Electron Microscopy Group of Materials Science, University of Ulm. "We greatly appreciate that FEI has stepped in to build on these developments and bring the SALVE project to its final phase. Our keys to success is the ability to correct optical aberrations, the stability of the microscope platform, and the progress in sample preparation and contrast interpretation. As scientists, we hardly can wait to operate the machine and to see what kinds of ground-breaking discoveries we might possibly be able to achieve."

Prof. Max Haider, CEOS, adds, "The SALVE project involves the use of low accelerating voltages, which have been rarely used in electron microscopes to date. We have had great success with our spherical aberration correctors on FEI's Titan platform, and we would like to extend that capability to correct the chromatic aberration that dominates at low voltages. This new microscope could open up entirely new fields in materials science, which involve investigating materials that have been impossible to study with existing microscope technology."

####

About FEI Company
FEI Company (Nasdaq: FEIC) designs, manufactures and supports a broad range of high-performance microscopy workflow solutions that provide images and answers at the micro-, nano- and picometer scales. Its innovation and leadership enable customers in industry and science to increase productivity and make breakthrough discoveries. Headquartered in Hillsboro, Ore., USA, FEI has over 2,600 employees and sales and service operations in more than 50 countries around the world. More information can be found at: www.fei.com.

FEI Safe Harbor Statement

This news release contains forward-looking statements that include statements regarding the performance capabilities and benefits of the SALVE project and the Titan 80-300 TEM. Factors that could affect these forward-looking statements include but are not limited to our ability to manufacture, ship, deliver and install the tools or software as expected; failure of the product or technology to perform as expected; unexpected technology problems and challenges; changes to the technology; the inability of FEI, its suppliers or project partners to make the technological advances required for the technology to achieve anticipated results; and the inability of the customer to deploy the tools or develop and deploy the expected new applications. Please also refer to our Form 10-K, Forms 10-Q, Forms 8-K and other filings with the U.S. Securities and Exchange Commission for additional information on these factors and other factors that could cause actual results to differ materially from the forward-looking statements. FEI assumes no duty to update forward-looking statements.

About the University of Ulm

The University of Ulm is situated in the east of Baden-Württemberg at the river Danube. The research, studying, and teaching activities concentrate on medicine, economics, natural science, engineering and material science. About 10,000 students are currently enlisted at the University of Ulm. The electron microscopy group headed by Prof. Ute Kaiser is well-known for the research in the field of low-voltage TEM and its application to novel beam sensitive materials such as low-dimensional objects. The group was one of the first adopters and users of aberration-corrected TEM technology with the FEI Titan system already in 2005. In 2008 Ute Kaiser started to establish the SALVE project with the aim of developing the prerequisites for transmission electron microscopy capable to reach atomic resolution at 20 kV. More information can be found at: www.salve-project.de.

About CEOS, GmbH

CEOS GmbH is a privately owned SME which concentrates on the developments and research of advanced charged particle optical components like aberration correctors for high resolution TEMs and STEMs as well as SEMs. Most of these components are produced by CEOS and after factory alignment and proper testing shipped as OEM products to the EM manufacturers. CEOS is located in Heidelberg, Germany and has more than 40 employees. More information can be found at: www.ceos-gmbh.de.

For more information, please click here

Contacts:
Sandy Fewkes
(media contact)
MindWrite Communications, Inc.
+1 408 224 4024


FEI Company
Jason Willey
(investors and analysts)
Investor Relations Director
+1 503 726 2533

Copyright © FEI Company

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project