Home > Press > Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium
![]() |
UMass Amherst scientists say they have settled the dispute between theoretical and experimental scientists by devising a combination of new experiments and better theoretical modeling of specialized electrical pili in the bacterium Geobacter. CREDIT: Derek Lovley and Eric Martz |
Abstract:
Scientific debate has been hot lately about whether microbial nanowires, the specialized electrical pili of the mud-dwelling anaerobic bacterium Geobacter sulfurreducens, truly possess metallic-like conductivity as its discoverers claim. But now University of Massachusetts Amherst microbiologist Derek Lovley, with postdoctoral researcher Nikhil Malvankar and colleagues, say they have settled the dispute between theoretical and experimental scientists by devising a combination of new experiments and better theoretical modeling.
In a series of papers going back to 2011, Lovley's group provided several lines of experimental evidence that Geobacter pili conduct electrons through the close interaction of aromatic amino acids in the protein filament structure. As Malvankar explains, "Electrons flow like they do in a copper wire, hence the term metallic-like conductivity." However, in the last two years many groups of theoretical modelers have published papers concluding that Lovley and Malvankar's results are impossible.
But, says Lovley, "In my view, experimental data trumps modeling. As the late physicist Richard Feynman said, 'It doesn't matter how beautiful your theory is, it doesn't matter how smart you are. If it doesn't agree with experiment, it's wrong.'"
In search of even more experimental data, Malvankar traveled to Brookhaven National Laboratory for two years to further evaluate the structure of Geobacter pili with sophisticated approaches including synchrotron X-ray microdiffraction and rocking-curve X-ray diffraction. He found a periodic 3.2-angstrom spacing of aromatic amino acids in the Geobacter pili, far closer together than the theoretical models predicted. Findings appear in the current issue of the journal mBio.
Lovely says, "In Nikhil's experiments, we see a clear signature of the close packing of the aromatic amino acids. Non-conductive pili lack this. Also, when Nikhil acidified the pili, there was an increase in the packing of the aromatics in proportion to an increase in their conductivity. These results are consistent with our concept of metallic-like conductivity in the pili. None of the models that rejected our hypothesis were consistent with these results."
To better understand the lack of correspondence between the experiments and models, Malvankar teamed up with Eric Martz, UMass Amherst emeritus professor and protein modeling expert. They found changing one simple assumption in building the pili model dramatically changed the outcome. Malvankar explains, "Previous models started with a template of the structure for Neisseria gonorrhoeae pili. However, Geobacter pili are actually more closely related to those of Pseudomonas aeruginosa. Our model is based on Pseudomonas."
Malvankar's model predicts dense packing of aromatic amino acids consistent with their experimental results and the hypothesis that Geobacter pili possess metallic-like conductivity.
Martz cautions, "We're not claiming our model is 100 percent correct. In fact, we're sure it's not. But the other models simply can't explain the experimental results. Our does. Also, the conductivity is coming from a protein. Scientists have always said that proteins cannot perform this function. We found not only do they do it, but they also do it well. This is fundamentally such an interesting finding that scientists will have to pay attention."
This discovery, supported by funding from the U.S. Office of Naval Research, is expected to aid in engineering other bacteria to produce microbial nanowires with synthetic biology methods. For example, Lovley's lab has invented an artificial form of photosynthesis in which microbes use renewable electricity to convert carbon dioxide to fuels and other organic chemicals. He says, "The better we understand how microbial nanowires work, the better our chances of optimizing the electrode-microbe electron exchange."
Malvankar adds, "There is also the opportunity to capitalize on the fundamental design principles that nature is teaching us to produce novel electronic materials in a sustainable way." In nature, Geobacter use their microbial nanowires to breathe; they transfer electrons onto iron oxides, natural rust-like minerals in soil, which serve the same function for these bacteria that oxygen does in humans. "What Geobacter can do with its nanowires is akin to breathing through a snorkel that's 10 kilometers long," he says.
Others in Lovley's group have shown that Geobacter uses microbial nanowires to electrically communicate with other microbial species. This cooperative electron sharing is important in the conversion of organic wastes to methane, an effective bioenergy strategy. Nanowires are also key components of ongoing studies by Lovley's lab to build biocomputers and novel biosensors. The UMass Amherst team is now working on a "pili factory" to make purified Geobacter pili freely available to other researchers, to repeat these experiments or carry out other studies.
####
For more information, please click here
Contacts:
Janet Lathrop
413-545-0444
Copyright © University of Massachusetts at Amherst
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Chip Technology
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Sensors
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Nanobiotechnology
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |