Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Ghent University and imec demonstrate interaction between light and sound in nanoscale waveguide: Silicon photonics enables extreme light-matter interaction

Both light (left) and sound (right) are trapped in a nanoscale silicon core.
Both light (left) and sound (right) are trapped in a nanoscale silicon core.

Abstract:
Scientists from Ghent University and imec announce today that they demonstrated interaction between light and sound in a nanoscale area. Their findings elucidate the physics of light-matter coupling at these scales - and pave the way for enhanced signal processing on mass-producible silicon photonic chips.

Ghent University and imec demonstrate interaction between light and sound in nanoscale waveguide: Silicon photonics enables extreme light-matter interaction

Gent and Leuven, Belgium | Posted on February 16th, 2015

In the last decade, the field of silicon photonics has gained increasing attention as a key driver of lab-on-a-chip biosensors and of faster-than-electronics communication between computer chips. The technology builds on tiny structures known as silicon photonic wires, which are roughly a hundred times narrower than a typical human hair. These nanowires carry optical signals from one point to another at the speed of light. They are fabricated with the same technological toolset as electronic circuitry.

Fundamentally, the wires work only because light moves slower in the silicon core than in the surrounding air and glass. Thus, the light is trapped inside the wire by the phenomenon of total internal reflection. Simply confining light is one thing, but manipulating it is another. The issue is that one light beam cannot easily change the properties of another. This is where light-matter interaction comes into the picture: it allows some photons to control other photons.

Publishing in Nature Photonics [1], researchers from the Photonics Research Group of Ghent University and imec report on a peculiar type of light-matter interaction. They managed to confine not only light but also sound to the silicon nanowires. The sound oscillates ten billion times per second: far more rapid than human ears can hear. They realized that the sound cannot be trapped in the wire by total internal reflection. Unlike light, sound moves faster in the silicon core than in the surrounding air and glass. Thus, the scientists sculpted the environment of the core to make sure any vibrational wave trying to escape it would actually bounce back. Doing so, they confined both light and sound to the same nanoscale waveguide core - a world's first observation.

Trapped in that incredibly small area, the light and vibrations strongly influence each other: light generates sound and sound shifts the color of light, a process known as stimulated Brillouin scattering. The scientists exploited this interaction to amplify specific colors of light. They anticipate this demonstration to open up new ways to manipulate optical information. For instance, light pulses could be converted into sonic pulses and back into light - thereby implementing much-needed delay lines. Further, the researchers expect that similar techniques can be applied to even smaller entities such as viruses and DNA. These particles have unique acoustic vibrations that may be used to probe their global structure.

####

About IMEC
Imec performs world-leading research in nano-electronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society. Imec is headquartered in Leuven, Belgium, and has offices in the Netherlands, Taiwan, US, China, India and Japan. Its staff of over 2,080 people includes more than 670 industrial residents and guest researchers. In 2013, imec's revenue (P&L) totaled 332 million euro. Further information on imec can be found at www.imec.be.

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a "stichting van openbaar nut”), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.) and imec China (IMEC Microelectronics (Shanghai) Co. Ltd.) and imec India (Imec India Private Limited).

About the Photonics Research Group

The Photonics Research Group in the Department of Information Technology of Ghent University is active in the field of photonic integration - more specifically silicon photonics - and its applications in information and communication technology, in sensing and in life sciences.

The group puts its research focus on new concepts for photonic integrated devices and circuits and on the associated technologies and design methodologies. This includes passive and active waveguide-based photonic components, based on CMOS-compatible materials and processes as well as hybrid approaches combining silicon with other functional materials. The activities center around the telecom wavelength of 1.55 micrometer but are expanding both to longer wavelengths (mid-IR) and shorter wavelengths (visible). The infrastructure of the group includes cleanroom facilities for in-house fabrication of components as well as a variety of CAD-tools and measurement labs. The group is associated with the nano-electronics research center imec in Leuven and uses the CMOS-oriented research facilities of imec for research on silicon photonics.

About Ghent University

Ghent University (UGent) consists of 117 departments across 11 faculties and offers high-quality research-based educational programs in virtually every scientific discipline. UGent distinguishes itself as a socially committed and pluralistic university in a broad international perspective. The motto of the university is ‘Dare to Think’. The university’s appeal is growing every year, with about 41,000 students in 2014, of whom 11% (students) and 35% (PhD students) are international. Numerous research groups, centres and institutes have been founded over the years, becoming world-renowned in disciplines such as biotechnology, aquaculture and photonics.

Ghent University is the only Belgian university in the top 100 of both the Shanghai (70) and Times ranking (85). The University has participated in more than 200 research projects in the EU’s Sixth Framework Programme (2002-2006) and in 260 projects in the Seventh Framework Programme, of which 26 ERC grants and 26 Marie Curie Fellowships. Ghent University coordinated 42 collaborative projects in FP7. The university provides excellent training opportunities to both young and experienced researchers, and is one of the fastest growing European universities in terms of research capacity and productivity.

For more information, please click here

Contacts:
Alison Flood
Business Technology
[ f o r m u l a ]
Havas Formula
Office 619-234-0345
Cell 619-757-0081

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

[1] R. Van Laer, B. Kuyken, D. Van Thourhout and R. Baets. Interaction between light and highly confined hypersound in a silicon photonic nanowire. Nature Photonics (2015):

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Lab-on-a-chip

Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime Peer-Reviewed Publication September 24th, 2021

RIT researchers build micro-device to detect bacteria, viruses: New process improves lab-on-chip devices to isolate drug-resistant strains of bacterial infection, viruses April 17th, 2020

Silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm March 13th, 2020

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Sensors

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Photonics/Optics/Lasers

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Research partnerships

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project