Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Freshmen-level chemistry solves the solubility mystery of graphene oxide films: Common contaminant found responsible for the material's stability in water

Abstract:
A Northwestern University-led team recently found the answer to a mysterious question that has puzzled the materials science community for years--and it came in the form of some surprisingly basic chemistry.

Freshmen-level chemistry solves the solubility mystery of graphene oxide films: Common contaminant found responsible for the material's stability in water

Evanston, IL | Posted on January 5th, 2015

Like many scientists, Jiaxing Huang did not understand why graphene oxide (GO) films were highly stable in water. When submerged, the individual GO sheets become negatively charged and repel each other, which should cause membrane to disintegrate. But earlier papers noted that instead of disintegrating, the films stabilized.

"It doesn't make any sense," said Huang, associate professor of materials science and engineering at the McCormick School of Engineering. "Many scientists have been very puzzled by this."

Graphene oxide, a product of graphite oxidation, is often used to make graphene, a single-atom-layer thick sheet of carbon that is remarkably strong, lightweight, and has high potential in electronics and energy storage. Within the past three years, however, more scientists have become interested in GO itself, partially because of its potential for molecular separation applications.

After studying the material for many years, Huang realized that the secret of GO's mysterious insolubility was the unintentional introduction of a common contaminant. To make a GO film, many scientists pass the acidic dispersion of individual sheets through porous anodized aluminum oxide filter discs, which are popularly used for preparing membranes of many nanomaterials. Huang's team found that during filtration, the aluminum filter discs corrode in acidic water to release a significant number of aluminum ions, Al3+. The positively charged ion bonds with the negatively charged GO sheets to stabilize the resulting membranes.

"We have solved the puzzle using essentially freshman-level inorganic chemistry," Huang said. "Now we know that graphene oxide films are indeed soluble in water. It's just a matter of sample purity."

Other multivalent metal ions, such as manganese, which is a byproduct from the synthesis of GO, can also crosslink the sheets.

Huang's research is described in "On the origin of stability of graphene-oxide membranes in water," published in Nature Chemistry on January 5. Other authors of the paper include graduate student Che-Ning Yeh, postdoc Kalyan Raidongia, former visiting graduate student Jiaojing Shao, and Shao's former adviser Quan-Hong Yang from Tianjin University in China. The National Science Foundation and Office of Naval Research funded different parts described in the paper.

Huang's finding also indicated that GO films are not as strong as researchers once thought. The aluminum ions make the film much stiffer. Without the ions, GO is three to four times weaker.

"This is a wake-up call for anyone using aluminum oxide filter discs," he said. "People have used it for sample preparation in many areas of materials science and biology. Now we know it's not as clean as we think."

####

For more information, please click here

Contacts:
Megan Fellman

847-491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Catalyzing environmental cleanup: A highly active and selective molecular catalyst and electrified membrane: Innovative electrochemical catalyst breaks down trichloroethylene pollutants at unprecedented rate September 13th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Graphene/ Graphite

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project