Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Dartmouth researchers create 'green' process to reduce molecular switching waste

 This is Ivan Aprahamian, an associate professor of chemistry at Dartmouth College.

Credit: Dartmouth College
This is Ivan Aprahamian, an associate professor of chemistry at Dartmouth College.

Credit: Dartmouth College

Abstract:
Dartmouth researchers have found a solution using visible light to reduce waste produced in chemically activated molecular switches, opening the way for industrial applications of nanotechnology ranging from anti-cancer drug delivery to LCD displays and molecular motors.

Dartmouth researchers create 'green' process to reduce molecular switching waste

Hanover, NH | Posted on December 15th, 2014

Chemically activated molecular switches are molecules that can shift controllably between two stable states and that can be reversibly switched -- like a light switch -- to turn different functions "on" and "off." For example, light-activated switches can fine-tune anti-cancer drugs, so they target only cancer cells and not healthy ones, thereby eliminating the side effects of chemotherapy.

But such switches typically generate waste and side products that are problematic. One way of making these processes cleaner is by using light energy, similar to how photosynthesis operates in nature. In their experiments, the researchers show that a merocyanine-based photoacid derivative can effectively be used in a switching process that is fast, efficient and forms no wastes.

"We address a bottleneck that's been hampering the field for decades -- what to do with the accumulated salts and side products when activating such switches," says co-author Ivan Aprahamian, an associate professor of chemistry. "Acids, bases and other compounds need to be constantly added to the mix to make sure the system can be switched, but within a few cycles there is so much waste that it interferes with the switching process. We found a neat solution by coupling an efficient photoacid to our chemically activated hydrazone switch. We showed the system can be efficiently modulated more than 100 times with no accumulation of waste or degradation. We are using visible light to accomplish this, so in reality we are converting light energy into a chemical output, similar to what happens in photosynthesis. You can look at this as a 'green' process that closes the loop in a nanotech-related process, and it will reduce waste in future industrial applications of molecular switches."

####

For more information, please click here

Contacts:
John Cramer

603-646-9130

Associate Professor
Ivan Aprahamian
is available to comment at:

Copyright © Dartmouth College

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The study appears in the Journal of the American Chemical Society:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Molecular Machines

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Controlling the speed of enzyme motors brings biomedical applications of nanorobots closer: Recent advances in this field have made micro- and nanomotors promising devices for solving many biomedical problems October 13th, 2020

Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020

Molecular Nanotechnology

Quantum pumping in molecular junctions August 16th, 2024

Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023

Scientist mimic nature to make nano particle metallic snowflakes: Scientists in New Zealand and Australia working at the level of atoms created something unexpected: tiny metallic snowflakes December 9th, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Industrial

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project