Home > Press > Researchers create & control spin waves, lifting prospects for enhanced info processing
![]() |
| A team of NYU and University of Barcelona physicists has developed a method to control the movements occurring within magnetic materials, which are used to store and carry information. The breakthrough could simultaneously bolster information processing while reducing the energy necessary to do so. ©iStock/mady70 |
Abstract:
A team of New York University and University of Barcelona physicists has developed a method to control the movements occurring within magnetic materials, which are used to store and carry information. The breakthrough could simultaneously bolster information processing while reducing the energy necessary to do so.
Their method, reported in the most recent issue of the journal Nature Nanotechnology, manipulates "spin waves," which are waves that move in magnetic materials. Physically, these spin waves are much like water waves--like those that propagate on the surface of an ocean. However, like electromagnetic waves (i.e., light and radio waves), spin waves can efficiently transfer energy and information from place to place.
The challenge, scientists have found, is developing a means to create and control them.
In the Nature Nanotechnology study, the NYU-UB researchers demonstrated how this could be achieved.
"Spin waves have great potential to improve information processing and make it more energy efficient," says Andrew Kent, a professor in NYU's Department of Physics and the paper's senior author. "Our results show that it's possible to both create and store spin wave energy in remarkably small spaces. The next steps are to understand how far these waves can propagate and how best to encode information in them."
The study's other authors included Ferran Macià, a former NYU-UB Marie-Curie Fellow and now at the University of Barcelona, and Dirk Backes, a former NYU postdoctoral fellow and presently at the University of Cambridge.
Currently, electromagnetic waves in antennas can be converted into spin waves. However, the resulting spin waves have a long wavelength and propagate slowly. By contrast, short-wavelength spin waves can move over greater distances, more quickly, and with less energy, and thus present the possibility of improving a range of communications and electronic devices.
In the Nature Nanotechnology study, the researchers conducted a series of experiments in which they built nanometer scale electrical contacts to inject spin-polarized electrical currents into magnetic materials--a process developed to create and control the movements of its spin waves.
Specifically, by blending different magnetic forces they were able to trap them in a specific area--forming magnetic "droplets" that remained in place rather than propagating, thereby forming a stable energy source. Future research, the scientists say, would then focus on ways to move this localized energy or release it in the form of propagating spin waves.
"We've known that spin waves can propagate, but we've shown in this study that you can control them so they will localize in a specific spot," explains Kent. "By changing the mix of magnetic forces on these droplets--such as with a electrical current or magnetic field--we should be able to get them to emit spin-waves, perhaps as energy bursts, that can encode information."
###
The research was supported by grants from the National Science Foundation (DMR- 1309202) and the Army Research Office (W911NF-08-1-0317) and conducted, in part, at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy. The research was also supported in part by a Marie Curie grant from the European Commission (IOF-253214).
####
For more information, please click here
Contacts:
James Devitt
212-998-6808
Copyright © New York University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
Wireless/telecommunications/RF/Antennas/Microwaves
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Spintronics
Quantum materials: Electron spin measured for the first time June 9th, 2023
Chip Technology
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Discoveries
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Military
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
Energy
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Research partnerships
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||