Home > Press > Production of Organometallic Frameworks in Least Possible Time
Abstract:
Iranian researchers used a combined method to produce organometallic frameworks at nanometric scale.
The time required for the production of nanostructures significantly decreases by using this method. Results of the research will have applications in gas and petrochemical industries.
Organometallic frameworks are classified as a new generation of porous crystalline materials. Size reduction of the particles to nanometric scale is very fantastic. Modulation is one of the methods used for the production of these compounds at nanometric scale. In this method, a functional group similar to one of the organic cross-linkers is used. In competition with organic cross-linkers, the functional groups surround the metallic active site and prevent the organometallic framework from growing towards that direction.
Taking into account the results of the research, organometallic frameworks can be produced at nanometric scale in the least possible time by combining the two methods of modulation and sonochemical.
Dr. Seyed Mohammad Amin Alavi explained about the results of the research, and said, "We succeeded in the production of organometallic nanorods in less than 90 minutes by combining modulation and sonochemical methods. In case modulation method is used solely, it has been reported that the production of these nanorods required at least 24 hours. Moreover, the size of obtained structures would be higher than 100 nm if sonochemical method is used solely. By combining this method with modulation method, nanorods at 80 nm scale were produced successfully."
This type of compounds is used as sorbents, gas storages, and catalysts due to their high porosity. Therefore, they can be used in gas and petrochemical industries and even as drug carrier for medical purposes.
Results of the research have been published in Ultrasonics Sonochemistry, vol. 22, issue 1, 2015, pp. 349-358.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Chemistry
Quantum interference in molecule-surface collisions February 28th, 2025
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Nanomedicine
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Nanobiotechnology
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |