Home > Press > New imaging agent provides better picture of the gut
![]()  | 
Abstract:
A multi-institutional team of researchers has developed a new nanoscale agent for imaging the gastrointestinal (GI) tract. This safe, noninvasive method for assessing the function and properties of the GI tract in real time could lead to better diagnosis and treatment of gut diseases. 
Illnesses such as small bowel bacterial overgrowth, irritable bowel syndrome and inflammatory bowel disease all occur in the intestine and can lead to serious side effects in patients with diseases such as diabetes and Parkinson's.
Until now, there hasn't been a good way to functionally image the intestine. However, in a paper published on July 6 in the journal Nature Nanotechnology, the researchers demonstrated that through a complementary approach using photoacoustic imaging and positron emission tomography (PET), they have created a multimodal functional imaging agent that could be used to perform noninvasive functional imaging of the intestine in real time.
Weibo Cai — an associate professor of radiology, medical physics and biomedical engineering at the University of Wisconsin-Madison — worked collaboratively with Jonathan Lovell, an assistant professor of biomedical engineering at the State University of New York at Buffalo, and Chulhong Kim, an assistant professor of creative information technology engineering at Pohang University of Science and Technology in South Korea. The team developed a family of nanoparticles that can provide good optical contrast for imaging — yet avoid absorption into the body and withstand the harsh conditions of the stomach and intestine.
Currently, patients drink a chalky liquid called barium and technicians view the intestine through X-rays and ultrasound. These methods, however, have many limitations, including accessibility and the possibility of radiation exposure.
The researchers' nanoparticles contain bright dyes. Patients still will drink a liquid, but it will contain the nanoparticles and allow an imaging technician to noninvasively view the illuminated intestine with photoacoustic imaging. "We can actually see the movement of the intestine in real time," Lovell says.
Cai and Lovell worked collaboratively to use two imaging techniques. Cai specializes in PET imaging — which uses radioisotope-based tracers and is used in health care settings for noninvasive, whole-body imaging. Lovell and Kim's expertise is in photoacoustic imaging, a technique that draws on ultrasound to generate high-definition images through light-based imaging.
While photoacoustic techniques yield high-definition images, PET imaging can penetrate deeper and image the entire body. Combining the two delivers the most information possible: high-definition images, images deep inside the body and a view of the intestine in relation to the entire body.
So far, the researchers have conducted successful test trials in mice and are hoping to move to human trials soon. "This is one of the first studies using both imaging techniques," Cai says. "The two imaging techniques work well together and get us all of the information that we need."
Both Lovell and Cai are excited about what the new imaging agent might mean for patients. "We could potentially induce a paradigm shift that allows for much more routine examination of the intestine function," Lovell says. "That would really benefit overall health."
Cai hopes the imaging agent can be targeted to look for certain disease-related markers and be used in therapeutic applications in the near future. "It is everything I would hope for in an imaging agent, and it is safe since we use FDA-approved agents to make these nanoparticles. That is why I am so excited about this," he says. "These are the promising first steps."
###
Grants from the National Institutes of Health, the Department of Defense and the Korean Ministry of Science funded the research. Additional authors on the paper include Yumiao Zhang, Mansik Jeon, Laurie J. Rich, Hao Hong, Jumin Geng, Yin Zhang, Sixiang Shi, Todd E. Barnhart, Paschalis Alexandridis, Jan D. Huizinga and Mukund Seshadri. 
####
For more information, please click here
Contacts:
Weibo Cai
608-262-1749
Jasmine Sola
Copyright © University of Wisconsin-Madison
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press | 
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Imaging
    ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
    Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
    First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
    New imaging approach transforms study of bacterial biofilms August 8th, 2025
Govt.-Legislation/Regulation/Funding/Policy
    New imaging approach transforms study of bacterial biofilms August 8th, 2025
    Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
    Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Nanomedicine
    New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
    New imaging approach transforms study of bacterial biofilms August 8th, 2025
    Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
    Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Military
    Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
    Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
    Single atoms show their true color July 5th, 2024
    NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
    Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
    New discovery aims to improve the design of microelectronic devices September 13th, 2024
    Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||