Home > Press > Production of New Type of Electrochemical Drug Sensors for Cardiovascular Diseases
Abstract:
Iranian scientists announced earlier this year that they have successfully synthesized and evaluated a new type of electrochemical sensors to measure verapamil cardiovascular drug.
Magnetic nanoparticles and acidic functionalized silicate mesoporous were used to produce a sensor able to detect low concentrations of verapamil.
This research was carried out in a few stages. The synthesis of magnetic nanoparticles and functionalized silicate mesoporous particles was among the very first steps which were carried out in Iran Pasteur Institute.
After the synthesis stage, the researchers doped magnetic nanoparticles inside the silicate mesoporous particles functionalized with acidic groups. After carrying out surface studying tests, they produced the desired composite and used it in the production of electrochemical nanosensor based on the technology to produce carbon paste sensors. Then, the produced sensor was tested and evaluated in various experiments by using standard and biological samples. At the end, the oxidation mechanism and the obtained products were proposed based on electrochemical techniques.
Results of the research have been published on 1 February 2013 in Electrochimica Acta, vol. 89. For more information about the details of the research, study the full article on pages 660-668 on the same journal.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Nanomedicine
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Sensors
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |