Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Engineer brings new twist to sodium ion battery technology with discovery of flexible molybdenum disulfide electrodes: A Kansas State University engineer has made a breakthrough in rechargeable battery applications

Abstract:
Gurpreet Singh, assistant professor of mechanical and nuclear engineering, and his student researchers are the first to demonstrate that a composite paper -- made of interleaved molybdenum disulfide and graphene nanosheets -- can be both an active material to efficiently store sodium atoms and a flexible current collector. The newly developed composite paper can be used as a negative electrode in sodium-ion batteries.

Engineer brings new twist to sodium ion battery technology with discovery of flexible molybdenum disulfide electrodes: A Kansas State University engineer has made a breakthrough in rechargeable battery applications

Manhattan, KS | Posted on January 29th, 2014

"Most negative electrodes for sodium-ion batteries use materials that undergo an 'alloying' reaction with sodium," Singh said. "These materials can swell as much as 400 to 500 percent as the battery is charged and discharged, which may result in mechanical damage and loss of electrical contact with the current collector."

"Molybdenum disulfide, the major constituent of the paper electrode, offers a new kind of chemistry with sodium ions, which is a combination of intercalation and a conversion-type reaction," Singh said. "The paper electrode offers stable charge capacity of 230 mAh.g-1, with respect to total electrode weight. Further, the interleaved and porous structure of the paper electrode offers smooth channels for sodium to diffuse in and out as the cell is charged and discharged quickly. This design also eliminates the polymeric binders and copper current collector foil used in a traditional battery electrode."

The research appears in the latest issue of the journal ACS-NANO in the article "MoS2/graphene composite paper for sodium-ion battery electrodes."

For the last two years the researchers have been developing new methods for quick and cost-effective synthesis of atomically thin two-dimensional materials — graphene, molybdenum and tungsten disulfide — in gram quantities, particularly for rechargeable battery applications.

For the latest research, the engineers created a large-area composite paper that consisted of acid-treated layered molybdenum disulfide and chemically modified graphene in an interleaved structured. The research marks the first time that such a flexible paper electrode was used in a sodium-ion battery as an anode that operates at room temperature. Most commercial sodium-sulfur batteries operate close to 300 degrees Celsius, Singh said.

Singh said the research is important for two reasons:

1. Synthesis of large quantities of single or few-layer-thick 2-D materials is crucial to understanding the true commercial potential of materials such as transition metal dichalcogenides, or TMD, and graphene.

2. Fundamental understanding of how sodium is stored in a layered material through mechanisms other than the conventional intercalation and alloying reaction. In addition, using graphene as the flexible support and current collector is crucial for eliminating the copper foil and making lighter and bendable rechargeable batteries. In contrast to lithium, sodium supplies are essentially unlimited and the batteries are expected to be a lot cheaper.

"From the synthesis point of view, we have shown that certain transition metal dichalcogenides can be exfoliated in strong acids," Singh said. "This method should allow synthesis of gram quantities of few-layer-thick molybdenum disulfide sheets, which is very crucial for applications such as flexible batteries, supercapacitors, and polymer composites. For such applications, TMD flakes that are a few atoms thick are sufficient. Very high-quality single-layer flakes are not a necessity."

The researchers are working to commercialize the technology, with assistance from the university's Institute of Commercialization. They also are exploring lithium and sodium storage in other nanomaterials.

Other Kansas State University researchers involved in the project include Lamuel David, lead author on the paper and a doctoral student in mechanical engineering, India, and Romil Bhandavat, recent doctoral graduate.

####

For more information, please click here

Contacts:
Gurpreet Singh

785-532-7085

Copyright © Kansas State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Graphene/ Graphite

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project