Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists Use Mathematical Models to Investigatie Electrochemical Growth Mechanism of Gold Nanowires

Abstract:
Iranian materials engineering researchers from Sharif University of Technology investigated electrochemical growth mechanism of gold nanowires and nanotubes by matching the recorded current response during the reduction of ionic parts of gold (during the electrochemical growth of nanowires/nanotube) and corresponding response with cylindrical ultramicro electrodes arrays.

Scientists Use Mathematical Models to Investigatie Electrochemical Growth Mechanism of Gold Nanowires

Tehran, Iran | Posted on November 25th, 2013

In this research, the electrochemical growth of gold nanowires/nanotubes was modeled. During the research, the mechanism of electrochemical growth of gold nanowires and nanotubes was investigated by using mathematical methods related to cylindrical ultramicro electrode arrays by matching the recorded current response during the reduction of ionic parts of gold (during the electrochemical growth of nanowires/nanotube) and corresponding response with cylindrical ultramicro electrodes arrays. An experimental model was obtained with an error of approximately 2.85% for the diffusion of gold ion complexes into the solution during the growth of gold nanowires.

The research was carried out in a few steps. Firstly, gold nanowires and nanotubes were synthesized through electrochemical deposition method, and the recorded data during the formation of nanostructures were studied. Then, the electrochemical reduction of gold nanowires was analyzed by using the response of cylindrical ultramicro electrode arrays. Next, an experimental model with an error of approximately 2.85% was obtained for the first time for the diffusion of gold ion complexes into the solution during the growth of gold nanowires. Finally, the performance and response of the obtained nanostructures were investigated.

Results of the research have been published in details in Journal of the Electrochemical Society, vol. 160, issue 6, 2013, pp. 279-288.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Announcements

Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project