Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Structure of bacterial nanowire protein hints at secrets of conduction: Electrically conducting bacteria important for energy, environment and technology

Zooming in on the Geobacter-Gonorrhea composite shows how the aromatic residues (teal balloon-like structures) bulge from the surface of pilin proteins (variously colored helical structures) within the fiber.
Zooming in on the Geobacter-Gonorrhea composite shows how the aromatic residues (teal balloon-like structures) bulge from the surface of pilin proteins (variously colored helical structures) within the fiber.

Abstract:
Tiny electrical wires protrude from some bacteria and contribute to rock and dirt formation. Researchers studying the protein that makes up one such wire have determined the protein's structure. The finding is important to such diverse fields as producing energy, recycling Earth's carbon and miniaturizing computers.

Structure of bacterial nanowire protein hints at secrets of conduction: Electrically conducting bacteria important for energy, environment and technology

Richland, WA | Posted on November 12th, 2013

"This is the first atomic resolution structure of this protein from an electrically conductive bacterial species, and it sets the foundation for understanding how these nanowires work," said structural biologist Patrick Reardon of the Department of Energy's Pacific Northwest National Laboratory. Reardon is the 2012 William R. Wiley Distinguished Postdoctoral Fellow at EMSL, the DOE's Environmental Molecular Sciences Laboratory at PNNL.

With the help of related structures on disease-causing bacteria, the researchers show that the protein's shape and form suggest possible ways for the bacteria to shuttle electrons along the nanowire. The results were reported in October in the Journal of Biological Chemistry.

"How to get electrons from the inside of bacteria to the outside is important for many different things, such as bacterial fuel cells, how carbon cycles through the environment and how to make new nanomaterials for applications like biocomputers," said Reardon.

Aromatic Therapy

Many bacterial species wave fingerlike projections along their bodies. The bacteria use these fingers, called pili, to adhere to surfaces or weave into films or recognize objects in the environment. A group of related bacteria makes these bendy, stretchy structures out of a protein called pilin, and an even smaller group uses these structures like electrical wires.

Researchers and engineers would like to take advantage of this wiring. Bacteria produce electrons while respiring and use the wires to run electrons out of their little bacterial bodies. Normally the electrons build up or break down minerals in rock, but the system can also be used to clean up toxic heavy metals or to run a bacterial fuel cell.

To better understand how pilins contribute to conduction, Reardon and NMR lead scientist Karl Mueller explored pilin from an electrically conducting bacteria known as Geobacter sulfurreducens.

Previous research on Geobacter's pilin — PilA — provided a big hint. PilA required certain spots along its length known as aromatic residues to conduct electricity. Without those aromatic residues where they were, Geobacter had no zip in its pili.

But proteins are like a long string that folds up into a compact three-dimensional shape. Without knowing the shape of pilin, it wasn't clear where the aromatic residues landed in space or how they contributed to electron shuttling.

Hop or Flow?

To find out, the researchers used NMR — a technology similar to medical MRIs — at EMSL to picture the shape of PilA.

On its own, PilA looks like a long skinny spring, with a slight kink about halfway up. The aromatic residues, which are bulky anyway, bulge along its length. But the protein by itself isn't enough to reveal how conduction works. Many pilin proteins work together to form a fiber, and Reardon and Mueller only had one.

Nor did the researchers have the whole fiber to put into the NMR instrument. To get more clues, Reardon borrowed the computer image of an assembled fiber from an unrelated species, the bacteria that cause gonorrhea. Gonorrhea's fiber does not conduct electricity nor does its pilin have as many aromatic residues. But its pilin has a similar shape to PilA, so using a computer program, Reardon overlaid PilA on its Gonorrhea cousins.

At this point, the aromatic residues clearly stood out.

"We get clusters of aromatic residues, and they wrap along the wire candy cane style," said Reardon.

But that just raised another question. If the electrons traveling along Geobacter's pilin are using these aromatic residues, they could be hopping from aromatic island to aromatic island. Alternatively, the aromatic residues could be close enough to pass the electrons through like a baton in a running race. Reardon and Mueller agree the single structure is not enough to choose between the two options.

The next step, Mueller said, is to purify the whole fiber from Geobacter microbes and determine the complete structure. The task is technologically challenging however because the fiber has to be grown within the bacteria themselves. Visualizing the whole fiber, though, will show the scientists if the fiber resembles islands in a stream more, or the streambed itself.

This work was supported by the Department of Energy's Office of Science.

####

About DOE/Pacific Northwest National Laboratory
Interdisciplinary teams at Pacific Northwest National Laboratory address many of America's most pressing issues in energy, the environment and national security through advances in basic and applied science. Founded in 1965, PNNL employs 4,300 staff and has an annual budget of about $950 million. It is managed by Battelle for the U.S. Department of Energy. For more information, visit the PNNL News Center, or follow PNNL on Facebook, Google+, LinkedIn and Twitter.

EMSL, the Environmental Molecular Sciences Laboratory, is a national scientific user facility sponsored by the Department of Energy's Office of Science. Located at Pacific Northwest National Laboratory in Richland, Wash., EMSL offers an open, collaborative environment for scientific discovery to researchers around the world. Its integrated computational and experimental resources enable researchers to realize important scientific insights and create new technologies. Follow EMSL on Facebook, LinkedIn and Twitter.

The Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

For more information, please click here

Contacts:
Mary Beckman

509-375-3688

Copyright © DOE/Pacific Northwest National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference: Patrick N. Reardon, and Karl T. Mueller. Structure of the Type IVa Major Pilin from the Electrically Conductive Bacterial Nanowires of Geobacter sulfurreducens, J. Biol. Chem. Oct. 11, 2013, DOI: 10.1074/jbc.M113.498527:

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Environment

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

New method in the fight against forever chemicals September 13th, 2024

Catalyzing environmental cleanup: A highly active and selective molecular catalyst and electrified membrane: Innovative electrochemical catalyst breaks down trichloroethylene pollutants at unprecedented rate September 13th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Nanobiotechnology

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project