Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > An optical switch based on a single nano-diamond: ICFO scientists have shown that a nano-size diamond at room temperature can act as an efficient optical switch controllable with light

This shows the nanomanipulation of an artificial atom.

Credit: ICFO
This shows the nanomanipulation of an artificial atom.

Credit: ICFO

Abstract:
A recent study led by researchers of the ICFO (Institute of Photonic Sciences) demonstrates that a single nano-diamond can be operated as an ultrafast single-emitter optical switch operating at room temperature. The scientific results of this study have been published in Nature Physics.

An optical switch based on a single nano-diamond: ICFO scientists have shown that a nano-size diamond at room temperature can act as an efficient optical switch controllable with light

Barcelona, Spain | Posted on October 15th, 2013

Electronic transistors have become a key component to modern electronics, drastically improving the speed of information processing of current technologies. An electronic transistor is a semiconductor device used to amplify and switch electronic signals. The much sought after optical transistor (the photonic counterpart of the electronic transistor) is poised to become a central ingredient in the development of optical signal processing. The motivation for using photons rather than electrons not only comes from their faster dynamics but also from their weaker interaction with the environment, which enable a high degree of integration and the realization of quantum operations.

Prior studies have demonstrated that single dye molecules can be operated as optical transistors with the disadvantage that they worked exclusively at extremely low temperatures. Such restrictions on the temperature made these optical transistors cumbersome for application to quantum computing.

However in this recent ICFO study, scientists have shown that a nano-size diamond at room temperature can act as an efficient optical switch controllable with light. A Nano-diamond containing a nitrogen impurity behaves like an artificial atom although much more stable at room temperature than a real atom due to its encapsulation. The ICFO scientists discovered a novel physical mechanism that enables the control of the way the nano-diamond interacts with light. While excited to its ON state by a green laser, a suitable near infrared illumination was found to act as an efficient and fast way to switch it OFF. Based on this simple concept, they were able to modulate the optical nano-diamond ON and OFF at extremely high speeds, demonstrating its robustness and viability for very fast information processing and quantum computer operations.

Quidant remarks that "what is really attractive about our discovery is that our nano-switch combines very small dimensions (compatible with integrating a large number of them in a small area) with very fast response time (meaning lots of operations in a short time) and operation at room temperature".

This new technique will contribute to the development of future integrated optical circuits as well as quantum information processing for quantum computing.

###

This work is a collaborative effort between the research groups at ICFO led by ICREA Professors at ICFO Javier García de Abajo and Romain Quidant.

Ref: Michael Geiselmann, Renaud Marty, F. Javier García de Abajo & Romain Quidant, Fast optical modulation of the fluorescence from a single nitrogen-vacancy centre, Nature Physics (2013), doi:10.1038/nphys2770

####

About ICFO-The Institute of Photonic Sciences
ICFO-The Institute of Photonic Sciences was created in 2002 by the government of Catalonia and the Technical University of Catalonia as a center of research excellence devoted to the science and technologies of light with a triple mission: to conduct frontier research, train the next generation of scientists and technologists, and provide knowledge and technology transfer. In recognition of research excellence, ICFO was granted the Severo Ochoa accreditation by the Ministry of Science and Innovation.

Research at ICFO targets the forefront of science and technology based on light with programs directed at applications in Health, Renewable Energies, Information Technologies, Security and Industrial processes, among others. The center currently hosts 300 professionals including researchers and PhD students, working in 60 laboratories. All research groups and facilities are located in a dedicated 14.000 m2 building situated in the Mediterranean Technology Park in the metropolitan area of Barcelona.

Researchers at ICFO publish in the most prestigious journals and collaborate with a wide range of companies around the world. The Client Liaison Program at ICFO, which includes members of a large number of local and international companies, aims to create synergies between ICFO and the industrial sector. The institute actively promotes the creation of spin-off companies by ICFO researchers. The institute participates in a large number of projects and international networks of excellence. Foundation Cellex finances the NEST program at ICFO which makes possible many ambitious frontier research projects.

For more information, please click here

Contacts:
Alina Hirschmann

34-935-542-246

Copyright © ICFO-The Institute of Photonic Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Photonics/Optics/Lasers

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Research partnerships

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project