Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > An optical switch based on a single nano-diamond: ICFO scientists have shown that a nano-size diamond at room temperature can act as an efficient optical switch controllable with light

This shows the nanomanipulation of an artificial atom.

Credit: ICFO
This shows the nanomanipulation of an artificial atom.

Credit: ICFO

Abstract:
A recent study led by researchers of the ICFO (Institute of Photonic Sciences) demonstrates that a single nano-diamond can be operated as an ultrafast single-emitter optical switch operating at room temperature. The scientific results of this study have been published in Nature Physics.

An optical switch based on a single nano-diamond: ICFO scientists have shown that a nano-size diamond at room temperature can act as an efficient optical switch controllable with light

Barcelona, Spain | Posted on October 15th, 2013

Electronic transistors have become a key component to modern electronics, drastically improving the speed of information processing of current technologies. An electronic transistor is a semiconductor device used to amplify and switch electronic signals. The much sought after optical transistor (the photonic counterpart of the electronic transistor) is poised to become a central ingredient in the development of optical signal processing. The motivation for using photons rather than electrons not only comes from their faster dynamics but also from their weaker interaction with the environment, which enable a high degree of integration and the realization of quantum operations.

Prior studies have demonstrated that single dye molecules can be operated as optical transistors with the disadvantage that they worked exclusively at extremely low temperatures. Such restrictions on the temperature made these optical transistors cumbersome for application to quantum computing.

However in this recent ICFO study, scientists have shown that a nano-size diamond at room temperature can act as an efficient optical switch controllable with light. A Nano-diamond containing a nitrogen impurity behaves like an artificial atom although much more stable at room temperature than a real atom due to its encapsulation. The ICFO scientists discovered a novel physical mechanism that enables the control of the way the nano-diamond interacts with light. While excited to its ON state by a green laser, a suitable near infrared illumination was found to act as an efficient and fast way to switch it OFF. Based on this simple concept, they were able to modulate the optical nano-diamond ON and OFF at extremely high speeds, demonstrating its robustness and viability for very fast information processing and quantum computer operations.

Quidant remarks that "what is really attractive about our discovery is that our nano-switch combines very small dimensions (compatible with integrating a large number of them in a small area) with very fast response time (meaning lots of operations in a short time) and operation at room temperature".

This new technique will contribute to the development of future integrated optical circuits as well as quantum information processing for quantum computing.

###

This work is a collaborative effort between the research groups at ICFO led by ICREA Professors at ICFO Javier García de Abajo and Romain Quidant.

Ref: Michael Geiselmann, Renaud Marty, F. Javier García de Abajo & Romain Quidant, Fast optical modulation of the fluorescence from a single nitrogen-vacancy centre, Nature Physics (2013), doi:10.1038/nphys2770

####

About ICFO-The Institute of Photonic Sciences
ICFO-The Institute of Photonic Sciences was created in 2002 by the government of Catalonia and the Technical University of Catalonia as a center of research excellence devoted to the science and technologies of light with a triple mission: to conduct frontier research, train the next generation of scientists and technologists, and provide knowledge and technology transfer. In recognition of research excellence, ICFO was granted the Severo Ochoa accreditation by the Ministry of Science and Innovation.

Research at ICFO targets the forefront of science and technology based on light with programs directed at applications in Health, Renewable Energies, Information Technologies, Security and Industrial processes, among others. The center currently hosts 300 professionals including researchers and PhD students, working in 60 laboratories. All research groups and facilities are located in a dedicated 14.000 m2 building situated in the Mediterranean Technology Park in the metropolitan area of Barcelona.

Researchers at ICFO publish in the most prestigious journals and collaborate with a wide range of companies around the world. The Client Liaison Program at ICFO, which includes members of a large number of local and international companies, aims to create synergies between ICFO and the industrial sector. The institute actively promotes the creation of spin-off companies by ICFO researchers. The institute participates in a large number of projects and international networks of excellence. Foundation Cellex finances the NEST program at ICFO which makes possible many ambitious frontier research projects.

For more information, please click here

Contacts:
Alina Hirschmann

34-935-542-246

Copyright © ICFO-The Institute of Photonic Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project